Genome-wide investigation reveals high evolutionary rates in annual model plants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Jia-Xing Yue, Jinpeng Li, Dan Wang, Hitoshi Araki, Dacheng Tian, Sihai Yang

ABSTRACT

BACKGROUND: Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. RESULTS: According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. CONCLUSIONS: The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level. More... »

PAGES

242

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2229-10-242

DOI

http://dx.doi.org/10.1186/1471-2229-10-242

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053111803

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21062446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Nucleus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chloroplasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Chloroplast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medicago truncatula", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Populus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vitis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China", 
            "Department of Ecology and Evolutionary Biology, Rice University, 77005, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yue", 
        "givenName": "Jia-Xing", 
        "id": "sg:person.0646257562.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646257562.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jinpeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dan", 
        "id": "sg:person.01246175240.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246175240.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Aquatic Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.418656.8", 
          "name": [
            "State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China", 
            "Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047, Kastanienbaum, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araki", 
        "givenName": "Hitoshi", 
        "id": "sg:person.01272402010.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272402010.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Dacheng", 
        "id": "sg:person.0776303701.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303701.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Sihai", 
        "id": "sg:person.01323715325.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323715325.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspb.2006.3657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000693046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001758106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.11.5722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003013293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(96)10006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004741147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005584795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006241119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-8-344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007442732", 
          "https://doi.org/10.1186/1471-2148-8-344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m104863200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007926574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.16.7844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008383515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2007.03091.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009140706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mpev.1994.1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009287019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mpev.1996.0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010029513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.37.091305.110215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011285269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.22.10676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012744456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013540379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1996.0112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020267557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020427894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1068275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020691036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022036195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1128691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022607900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(96)81056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022838762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.24.9054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022917385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2005.3217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023813811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.82.6.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027315234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.060863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027936907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.060863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027936907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(65)90083-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028819868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029791427", 
          "https://doi.org/10.1038/nature02053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029791427", 
          "https://doi.org/10.1038/nature02053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.19.10274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030242883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-002-2395-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030798322", 
          "https://doi.org/10.1007/s00239-002-2395-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x88-032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01653959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037450396", 
          "https://doi.org/10.1007/bf01653959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01653959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037450396", 
          "https://doi.org/10.1007/bf01653959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-9-177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037888457", 
          "https://doi.org/10.1186/1471-2148-9-177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040664071", 
          "https://doi.org/10.1038/nature06148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00435285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040669716", 
          "https://doi.org/10.1007/bf00435285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.73.6.2086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042660594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-009-9307-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043051278", 
          "https://doi.org/10.1007/s00239-009-9307-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-009-9307-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043051278", 
          "https://doi.org/10.1007/s00239-009-9307-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.9.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298669", 
          "https://doi.org/10.1038/35048692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298669", 
          "https://doi.org/10.1038/35048692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-008-9095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044644700", 
          "https://doi.org/10.1007/s00239-008-9095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-008-9095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044644700", 
          "https://doi.org/10.1007/s00239-008-9095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5494.1151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.23.110192.001403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051701510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-8-280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052214988", 
          "https://doi.org/10.1186/1471-2148-8-280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1163197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062458635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.179.4078.1144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062506733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3082006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062588627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2656886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070048664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079673639", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080526109", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.\nRESULTS: According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.\nCONCLUSIONS: The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2229-10-242", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4926059", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5214309", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024638", 
        "issn": [
          "1471-2229"
        ], 
        "name": "BMC Plant Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Genome-wide investigation reveals high evolutionary rates in annual model plants", 
    "pagination": "242", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcfbabadef32fdab8756974fd764ccac04a9e1dc4d232e8350372fcd55f69926"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21062446"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967807"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2229-10-242"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053111803"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2229-10-242", 
      "https://app.dimensions.ai/details/publication/pub.1053111803"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2229-10-242"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-10-242'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-10-242'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-10-242'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-10-242'


 

This table displays all metadata directly associated to this object as RDF triples.

322 TRIPLES      21 PREDICATES      91 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2229-10-242 schema:about N1827759441d64c968fc98ea581520041
2 N69b632baa53f4eeb9f9c948712ac402e
3 N763bcb47292b4446971dabffc6dee9b2
4 N818e1740f6ac4de994b06bbe3eb52c27
5 N8a1af6f9e3fa4502b40b4ec17dbbdb5a
6 N8d80bdbcbdd7402fb7a75f7a423f066a
7 N9057d5ae1c674d6484919ca5749abba6
8 N926f2c5ba60b4291a6e0ce44b3f0bc45
9 N9a644f65f23a4bfb9c7d23f46aa31782
10 Nc113040cc98c42ad88a23805c9dbc5fd
11 Nd6b279396aee46dcb3ac3f2f0f16ff06
12 Nd88eaca5137f47829ea42e916d30c21f
13 Ndff4ba9edf7b4927a7f8012483501e1e
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author Na2c7ebe2546b4a3f8975ec2418c0d2a2
17 schema:citation sg:pub.10.1007/bf00435285
18 sg:pub.10.1007/bf01653959
19 sg:pub.10.1007/s00239-002-2395-0
20 sg:pub.10.1007/s00239-008-9095-3
21 sg:pub.10.1007/s00239-009-9307-5
22 sg:pub.10.1038/35048692
23 sg:pub.10.1038/nature02053
24 sg:pub.10.1038/nature06148
25 sg:pub.10.1186/1471-2148-8-280
26 sg:pub.10.1186/1471-2148-8-344
27 sg:pub.10.1186/1471-2148-9-177
28 https://app.dimensions.ai/details/publication/pub.1079673639
29 https://app.dimensions.ai/details/publication/pub.1080526109
30 https://doi.org/10.1006/mpev.1994.1040
31 https://doi.org/10.1006/mpev.1996.0012
32 https://doi.org/10.1016/0022-5193(65)90083-4
33 https://doi.org/10.1016/0169-5347(96)10006-9
34 https://doi.org/10.1016/0169-5347(96)81056-1
35 https://doi.org/10.1073/pnas.73.6.2086
36 https://doi.org/10.1073/pnas.82.6.1741
37 https://doi.org/10.1073/pnas.84.24.9054
38 https://doi.org/10.1073/pnas.89.16.7844
39 https://doi.org/10.1073/pnas.90.22.10676
40 https://doi.org/10.1073/pnas.90.9.4087
41 https://doi.org/10.1073/pnas.93.19.10274
42 https://doi.org/10.1073/pnas.94.11.5722
43 https://doi.org/10.1074/jbc.m104863200
44 https://doi.org/10.1093/molbev/msm088
45 https://doi.org/10.1093/molbev/msm092
46 https://doi.org/10.1093/nar/22.22.4673
47 https://doi.org/10.1093/oxfordjournals.molbev.a003894
48 https://doi.org/10.1093/oxfordjournals.molbev.a025781
49 https://doi.org/10.1093/oxfordjournals.molbev.a025817
50 https://doi.org/10.1093/oxfordjournals.molbev.a026126
51 https://doi.org/10.1098/rspb.2005.3217
52 https://doi.org/10.1098/rspb.2006.3657
53 https://doi.org/10.1098/rstb.1996.0112
54 https://doi.org/10.1111/j.1365-313x.2007.03091.x
55 https://doi.org/10.1126/science.1068275
56 https://doi.org/10.1126/science.1128691
57 https://doi.org/10.1126/science.1163197
58 https://doi.org/10.1126/science.179.4078.1144
59 https://doi.org/10.1126/science.290.5494.1151
60 https://doi.org/10.1126/science.3082006
61 https://doi.org/10.1139/x88-032
62 https://doi.org/10.1146/annurev.ecolsys.37.091305.110215
63 https://doi.org/10.1146/annurev.es.23.110192.001403
64 https://doi.org/10.1534/genetics.106.060863
65 https://doi.org/10.2307/2656886
66 schema:datePublished 2010-12
67 schema:datePublishedReg 2010-12-01
68 schema:description BACKGROUND: Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. RESULTS: According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. CONCLUSIONS: The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree true
72 schema:isPartOf N4dadb6b245c4445287170dae28b7c997
73 N86bbb5df45984843a351a8be479f6974
74 sg:journal.1024638
75 schema:name Genome-wide investigation reveals high evolutionary rates in annual model plants
76 schema:pagination 242
77 schema:productId N13afae4d7796494289a662da6575fb8f
78 N31b269b5a9574038b40c8947f9701591
79 N5a932f43aa2b4396a4284891019b5e7e
80 N76e534efa55f4e96940383a3fc706ac3
81 N7b916d331c61437a9a6ee4e732d0b0ac
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053111803
83 https://doi.org/10.1186/1471-2229-10-242
84 schema:sdDatePublished 2019-04-10T18:19
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N2d1b1c97010d4665a8c486ce98177364
87 schema:url http://link.springer.com/10.1186%2F1471-2229-10-242
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N13afae4d7796494289a662da6575fb8f schema:name readcube_id
92 schema:value fcfbabadef32fdab8756974fd764ccac04a9e1dc4d232e8350372fcd55f69926
93 rdf:type schema:PropertyValue
94 N1827759441d64c968fc98ea581520041 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Vitis
96 rdf:type schema:DefinedTerm
97 N2d1b1c97010d4665a8c486ce98177364 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N31b269b5a9574038b40c8947f9701591 schema:name dimensions_id
100 schema:value pub.1053111803
101 rdf:type schema:PropertyValue
102 N33c5cac648aa4b85978d55ebd3f6e65e rdf:first sg:person.01323715325.96
103 rdf:rest rdf:nil
104 N4c8a90a853a447a88526d719cd72850a rdf:first sg:person.01246175240.06
105 rdf:rest Na4cbd9d4bd1949d3afd601e65f74092b
106 N4dadb6b245c4445287170dae28b7c997 schema:volumeNumber 10
107 rdf:type schema:PublicationVolume
108 N5a932f43aa2b4396a4284891019b5e7e schema:name doi
109 schema:value 10.1186/1471-2229-10-242
110 rdf:type schema:PropertyValue
111 N69b632baa53f4eeb9f9c948712ac402e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Populus
113 rdf:type schema:DefinedTerm
114 N763bcb47292b4446971dabffc6dee9b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Evolution, Molecular
116 rdf:type schema:DefinedTerm
117 N76e534efa55f4e96940383a3fc706ac3 schema:name nlm_unique_id
118 schema:value 100967807
119 rdf:type schema:PropertyValue
120 N7b916d331c61437a9a6ee4e732d0b0ac schema:name pubmed_id
121 schema:value 21062446
122 rdf:type schema:PropertyValue
123 N818e1740f6ac4de994b06bbe3eb52c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Plants
125 rdf:type schema:DefinedTerm
126 N86bbb5df45984843a351a8be479f6974 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N895f64a38c3d4cc39f5f79725dc1d06a rdf:first sg:person.0776303701.43
129 rdf:rest N33c5cac648aa4b85978d55ebd3f6e65e
130 N8a1af6f9e3fa4502b40b4ec17dbbdb5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Nuclear Proteins
132 rdf:type schema:DefinedTerm
133 N8d80bdbcbdd7402fb7a75f7a423f066a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Cell Nucleus
135 rdf:type schema:DefinedTerm
136 N9057d5ae1c674d6484919ca5749abba6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Chloroplasts
138 rdf:type schema:DefinedTerm
139 N926f2c5ba60b4291a6e0ce44b3f0bc45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name DNA, Chloroplast
141 rdf:type schema:DefinedTerm
142 N9a644f65f23a4bfb9c7d23f46aa31782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Phylogeny
144 rdf:type schema:DefinedTerm
145 N9da90ae75f7544e4b19a7a944011b783 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
146 schema:familyName Li
147 schema:givenName Jinpeng
148 rdf:type schema:Person
149 N9f642955382f466b90e6cff4d11bc282 rdf:first N9da90ae75f7544e4b19a7a944011b783
150 rdf:rest N4c8a90a853a447a88526d719cd72850a
151 Na2c7ebe2546b4a3f8975ec2418c0d2a2 rdf:first sg:person.0646257562.14
152 rdf:rest N9f642955382f466b90e6cff4d11bc282
153 Na4cbd9d4bd1949d3afd601e65f74092b rdf:first sg:person.01272402010.92
154 rdf:rest N895f64a38c3d4cc39f5f79725dc1d06a
155 Nc113040cc98c42ad88a23805c9dbc5fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Genome, Plant
157 rdf:type schema:DefinedTerm
158 Nd6b279396aee46dcb3ac3f2f0f16ff06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Arabidopsis
160 rdf:type schema:DefinedTerm
161 Nd88eaca5137f47829ea42e916d30c21f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Medicago truncatula
163 rdf:type schema:DefinedTerm
164 Ndff4ba9edf7b4927a7f8012483501e1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Plant Proteins
166 rdf:type schema:DefinedTerm
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
171 schema:name Genetics
172 rdf:type schema:DefinedTerm
173 sg:grant.4926059 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2229-10-242
174 rdf:type schema:MonetaryGrant
175 sg:grant.5214309 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2229-10-242
176 rdf:type schema:MonetaryGrant
177 sg:journal.1024638 schema:issn 1471-2229
178 schema:name BMC Plant Biology
179 rdf:type schema:Periodical
180 sg:person.01246175240.06 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
181 schema:familyName Wang
182 schema:givenName Dan
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246175240.06
184 rdf:type schema:Person
185 sg:person.01272402010.92 schema:affiliation https://www.grid.ac/institutes/grid.418656.8
186 schema:familyName Araki
187 schema:givenName Hitoshi
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272402010.92
189 rdf:type schema:Person
190 sg:person.01323715325.96 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
191 schema:familyName Yang
192 schema:givenName Sihai
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323715325.96
194 rdf:type schema:Person
195 sg:person.0646257562.14 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
196 schema:familyName Yue
197 schema:givenName Jia-Xing
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646257562.14
199 rdf:type schema:Person
200 sg:person.0776303701.43 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
201 schema:familyName Tian
202 schema:givenName Dacheng
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303701.43
204 rdf:type schema:Person
205 sg:pub.10.1007/bf00435285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040669716
206 https://doi.org/10.1007/bf00435285
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/bf01653959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037450396
209 https://doi.org/10.1007/bf01653959
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00239-002-2395-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798322
212 https://doi.org/10.1007/s00239-002-2395-0
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00239-008-9095-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044644700
215 https://doi.org/10.1007/s00239-008-9095-3
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s00239-009-9307-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043051278
218 https://doi.org/10.1007/s00239-009-9307-5
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/35048692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298669
221 https://doi.org/10.1038/35048692
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nature02053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029791427
224 https://doi.org/10.1038/nature02053
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nature06148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040664071
227 https://doi.org/10.1038/nature06148
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/1471-2148-8-280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052214988
230 https://doi.org/10.1186/1471-2148-8-280
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/1471-2148-8-344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007442732
233 https://doi.org/10.1186/1471-2148-8-344
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2148-9-177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037888457
236 https://doi.org/10.1186/1471-2148-9-177
237 rdf:type schema:CreativeWork
238 https://app.dimensions.ai/details/publication/pub.1079673639 schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1080526109 schema:CreativeWork
240 https://doi.org/10.1006/mpev.1994.1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009287019
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1006/mpev.1996.0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010029513
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/0022-5193(65)90083-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028819868
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/0169-5347(96)10006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004741147
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/0169-5347(96)81056-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022838762
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1073/pnas.73.6.2086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042660594
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.82.6.1741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027315234
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.84.24.9054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022917385
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.89.16.7844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008383515
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.90.22.10676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012744456
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1073/pnas.90.9.4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043208527
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1073/pnas.93.19.10274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030242883
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1073/pnas.94.11.5722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003013293
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1074/jbc.m104863200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007926574
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/molbev/msm088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427894
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/molbev/msm092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001758106
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/oxfordjournals.molbev.a003894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005584795
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/oxfordjournals.molbev.a025781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006241119
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/oxfordjournals.molbev.a025817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013540379
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1093/oxfordjournals.molbev.a026126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022036195
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1098/rspb.2005.3217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023813811
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1098/rspb.2006.3657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000693046
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1098/rstb.1996.0112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020267557
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1111/j.1365-313x.2007.03091.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009140706
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.1068275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020691036
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.1128691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022607900
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.1163197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062458635
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1126/science.179.4078.1144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062506733
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1126/science.290.5494.1151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050543187
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1126/science.3082006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062588627
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1139/x88-032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743856
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1146/annurev.ecolsys.37.091305.110215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011285269
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1146/annurev.es.23.110192.001403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051701510
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1534/genetics.106.060863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027936907
309 rdf:type schema:CreativeWork
310 https://doi.org/10.2307/2656886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070048664
311 rdf:type schema:CreativeWork
312 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
313 schema:name Department of Ecology and Evolutionary Biology, Rice University, 77005, Houston, TX, USA
314 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China
315 rdf:type schema:Organization
316 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
317 schema:name State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.418656.8 schema:alternateName Swiss Federal Institute of Aquatic Science and Technology
320 schema:name Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047, Kastanienbaum, Switzerland
321 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR, China
322 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...