Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03-31

AUTHORS

Vinita Periwal, Shireesha Kishtapuram, Open Source Drug Discovery Consortium, Vinod Scaria

ABSTRACT

BackgroundThe emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens.ResultsWe show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection.ConclusionsIn the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries. More... »

PAGES

1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2210-12-1

DOI

http://dx.doi.org/10.1186/1471-2210-12-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029148442

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22463123


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitubercular Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Negative Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Positive Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Multidrug-Resistant", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Periwal", 
        "givenName": "Vinita", 
        "id": "sg:person.01050057346.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050057346.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishtapuram", 
        "givenName": "Shireesha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Open Source Drug Discovery Consortium", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scaria", 
        "givenName": "Vinod", 
        "id": "sg:person.01312136117.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312136117.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1758-2946-1-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773517", 
          "https://doi.org/10.1186/1758-2946-1-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007465528199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030680500", 
          "https://doi.org/10.1023/a:1007465528199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-4-504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042459618", 
          "https://doi.org/10.1186/1756-0500-4-504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005793977", 
          "https://doi.org/10.1038/nrd2201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-011-0413-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018464369", 
          "https://doi.org/10.1007/s11095-011-0413-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022837599", 
          "https://doi.org/10.1186/1471-2105-9-363"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-31", 
    "datePublishedReg": "2012-03-31", 
    "description": "BackgroundThe emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens.ResultsWe show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection.ConclusionsIn the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2210-12-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024637", 
        "issn": [
          "1471-2210"
        ], 
        "name": "BMC Pharmacology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "imbalanced large datasets", 
      "machine learning tools", 
      "availability of datasets", 
      "high-throughput biological screens", 
      "virtual high-throughput screen", 
      "machine learning", 
      "supervised state", 
      "art classifiers", 
      "accurate classifier", 
      "predictive model", 
      "effective predictive model", 
      "silico predictive models", 
      "large datasets", 
      "computational methods", 
      "classifier", 
      "learning tools", 
      "public domain", 
      "dataset", 
      "screening datasets", 
      "large molecular libraries", 
      "computational model", 
      "virtual screen", 
      "random selection", 
      "biological screens", 
      "large scale", 
      "cost", 
      "learning", 
      "descriptors", 
      "domain", 
      "model", 
      "high-throughput virtual screen", 
      "screen", 
      "library", 
      "molecular descriptors", 
      "need", 
      "tool", 
      "method", 
      "plausible propositions", 
      "selection", 
      "time", 
      "availability", 
      "discovery", 
      "data", 
      "world", 
      "efforts", 
      "Further analysis", 
      "proposition", 
      "molecular libraries", 
      "AROC", 
      "state", 
      "emergence", 
      "high-throughput screen", 
      "analysis", 
      "addition", 
      "scale", 
      "values", 
      "activity", 
      "anti-tubercular activity", 
      "study", 
      "ResultsWe", 
      "BCR values", 
      "fold enrichment", 
      "unmet need", 
      "throughput screen", 
      "molecules", 
      "novel molecules", 
      "pandemic proportions", 
      "enrichment", 
      "paucity", 
      "multi-drug resistant tuberculosis", 
      "proportion", 
      "novel therapeutics", 
      "therapeutics", 
      "ConclusionsIn", 
      "resistant tuberculosis", 
      "assays", 
      "present study", 
      "tuberculosis", 
      "approach"
    ], 
    "name": "Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets", 
    "pagination": "1", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029148442"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2210-12-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22463123"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2210-12-1", 
      "https://app.dimensions.ai/details/publication/pub.1029148442"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_557.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2210-12-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      127 URIs      112 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2210-12-1 schema:about N087c37cd46ae4c368baf527699664e5b
2 N373399aea66940a681cc46bfd20e77ee
3 N39b6973f4ad64123aaace15779b4c9fa
4 N3a03d07a47de4605a7dcc52798e7a467
5 N5ba19b56400547a19f00798e430d35fe
6 N70b88461d08e419fb0ffd847ab79f696
7 N79384240b12b44118325f1f6f0676b92
8 N8612088f5ffe4d1f87581d4268d3bacd
9 N9280f2db6944430b82a41a564af0ab18
10 N9d7dc0d2eaea48e8b923e62548fb8030
11 Nadff2baf70c642b49eb2da7fd4913f55
12 Nb4cdb5d5d0d2450aa7b773ee85283b8d
13 Nbaf11e3019754b72971058a593ec5924
14 Nc0f6c7aaeb674b5f94b94ece57fe3c16
15 Nd259bb30d4dd48db81202c68b765f30b
16 Ndaddc1e593044efe848425197bffaed7
17 anzsrc-for:11
18 anzsrc-for:1115
19 schema:author N7d5eb6c398204875af0d063711dd8fc2
20 schema:citation sg:pub.10.1007/s11095-011-0413-x
21 sg:pub.10.1023/a:1007465528199
22 sg:pub.10.1023/a:1010933404324
23 sg:pub.10.1038/nrd2201
24 sg:pub.10.1186/1471-2105-9-363
25 sg:pub.10.1186/1756-0500-4-504
26 sg:pub.10.1186/1758-2946-1-21
27 schema:datePublished 2012-03-31
28 schema:datePublishedReg 2012-03-31
29 schema:description BackgroundThe emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens.ResultsWe show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection.ConclusionsIn the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N2d42c91743ce4617814edbde2b0b9eb0
33 Nca22774ce9d44323a39b27395c07f1b2
34 sg:journal.1024637
35 schema:keywords AROC
36 BCR values
37 ConclusionsIn
38 Further analysis
39 ResultsWe
40 accurate classifier
41 activity
42 addition
43 analysis
44 anti-tubercular activity
45 approach
46 art classifiers
47 assays
48 availability
49 availability of datasets
50 biological screens
51 classifier
52 computational methods
53 computational model
54 cost
55 data
56 dataset
57 descriptors
58 discovery
59 domain
60 effective predictive model
61 efforts
62 emergence
63 enrichment
64 fold enrichment
65 high-throughput biological screens
66 high-throughput screen
67 high-throughput virtual screen
68 imbalanced large datasets
69 large datasets
70 large molecular libraries
71 large scale
72 learning
73 learning tools
74 library
75 machine learning
76 machine learning tools
77 method
78 model
79 molecular descriptors
80 molecular libraries
81 molecules
82 multi-drug resistant tuberculosis
83 need
84 novel molecules
85 novel therapeutics
86 pandemic proportions
87 paucity
88 plausible propositions
89 predictive model
90 present study
91 proportion
92 proposition
93 public domain
94 random selection
95 resistant tuberculosis
96 scale
97 screen
98 screening datasets
99 selection
100 silico predictive models
101 state
102 study
103 supervised state
104 therapeutics
105 throughput screen
106 time
107 tool
108 tuberculosis
109 unmet need
110 values
111 virtual high-throughput screen
112 virtual screen
113 world
114 schema:name Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets
115 schema:pagination 1
116 schema:productId N18931ce6564b42409b051a2426072e40
117 Nb134ccd448d7454482025e983d61dc94
118 Nc6943f9990fb45de98f218196f02820d
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029148442
120 https://doi.org/10.1186/1471-2210-12-1
121 schema:sdDatePublished 2022-11-24T20:56
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N4316b864c09143ea8d9a92c5debb2151
124 schema:url https://doi.org/10.1186/1471-2210-12-1
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N087c37cd46ae4c368baf527699664e5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name False Negative Reactions
130 rdf:type schema:DefinedTerm
131 N18931ce6564b42409b051a2426072e40 schema:name doi
132 schema:value 10.1186/1471-2210-12-1
133 rdf:type schema:PropertyValue
134 N2d42c91743ce4617814edbde2b0b9eb0 schema:volumeNumber 12
135 rdf:type schema:PublicationVolume
136 N373399aea66940a681cc46bfd20e77ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Predictive Value of Tests
138 rdf:type schema:DefinedTerm
139 N39b6973f4ad64123aaace15779b4c9fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Antitubercular Agents
141 rdf:type schema:DefinedTerm
142 N3a03d07a47de4605a7dcc52798e7a467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Tuberculosis, Multidrug-Resistant
144 rdf:type schema:DefinedTerm
145 N4316b864c09143ea8d9a92c5debb2151 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N49a6f55de1914e04b718af834836c6a3 schema:affiliation grid-institutes:grid.418099.d
148 schema:familyName Open Source Drug Discovery Consortium
149 rdf:type schema:Person
150 N5ba19b56400547a19f00798e430d35fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Algorithms
152 rdf:type schema:DefinedTerm
153 N70b88461d08e419fb0ffd847ab79f696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Mycobacterium tuberculosis
155 rdf:type schema:DefinedTerm
156 N79384240b12b44118325f1f6f0676b92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Drug Discovery
158 rdf:type schema:DefinedTerm
159 N7d5eb6c398204875af0d063711dd8fc2 rdf:first sg:person.01050057346.38
160 rdf:rest Nc493d61bca03425babf7f898c5de7c3b
161 N8612088f5ffe4d1f87581d4268d3bacd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Computer Simulation
163 rdf:type schema:DefinedTerm
164 N9280f2db6944430b82a41a564af0ab18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Bayes Theorem
166 rdf:type schema:DefinedTerm
167 N95b51f354ddf4483b67c464d6b698ad4 schema:affiliation grid-institutes:grid.418099.d
168 schema:familyName Kishtapuram
169 schema:givenName Shireesha
170 rdf:type schema:Person
171 N9836e4b59d4a4936964e0de576c41911 rdf:first N49a6f55de1914e04b718af834836c6a3
172 rdf:rest Nc9e4bdb6c2b74f1d86b825a3627c1edf
173 N9d7dc0d2eaea48e8b923e62548fb8030 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Databases, Genetic
175 rdf:type schema:DefinedTerm
176 Nadff2baf70c642b49eb2da7fd4913f55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name High-Throughput Screening Assays
178 rdf:type schema:DefinedTerm
179 Nb134ccd448d7454482025e983d61dc94 schema:name pubmed_id
180 schema:value 22463123
181 rdf:type schema:PropertyValue
182 Nb4cdb5d5d0d2450aa7b773ee85283b8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name False Positive Reactions
184 rdf:type schema:DefinedTerm
185 Nbaf11e3019754b72971058a593ec5924 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Artificial Intelligence
187 rdf:type schema:DefinedTerm
188 Nc0f6c7aaeb674b5f94b94ece57fe3c16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Models, Theoretical
190 rdf:type schema:DefinedTerm
191 Nc493d61bca03425babf7f898c5de7c3b rdf:first N95b51f354ddf4483b67c464d6b698ad4
192 rdf:rest N9836e4b59d4a4936964e0de576c41911
193 Nc6943f9990fb45de98f218196f02820d schema:name dimensions_id
194 schema:value pub.1029148442
195 rdf:type schema:PropertyValue
196 Nc9e4bdb6c2b74f1d86b825a3627c1edf rdf:first sg:person.01312136117.75
197 rdf:rest rdf:nil
198 Nca22774ce9d44323a39b27395c07f1b2 schema:issueNumber 1
199 rdf:type schema:PublicationIssue
200 Nd259bb30d4dd48db81202c68b765f30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Humans
202 rdf:type schema:DefinedTerm
203 Ndaddc1e593044efe848425197bffaed7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Software
205 rdf:type schema:DefinedTerm
206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
207 schema:name Medical and Health Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
210 schema:name Pharmacology and Pharmaceutical Sciences
211 rdf:type schema:DefinedTerm
212 sg:journal.1024637 schema:issn 1471-2210
213 schema:name BMC Pharmacology
214 schema:publisher Springer Nature
215 rdf:type schema:Periodical
216 sg:person.01050057346.38 schema:affiliation grid-institutes:grid.417639.e
217 schema:familyName Periwal
218 schema:givenName Vinita
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050057346.38
220 rdf:type schema:Person
221 sg:person.01312136117.75 schema:affiliation grid-institutes:grid.417639.e
222 schema:familyName Scaria
223 schema:givenName Vinod
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312136117.75
225 rdf:type schema:Person
226 sg:pub.10.1007/s11095-011-0413-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018464369
227 https://doi.org/10.1007/s11095-011-0413-x
228 rdf:type schema:CreativeWork
229 sg:pub.10.1023/a:1007465528199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030680500
230 https://doi.org/10.1023/a:1007465528199
231 rdf:type schema:CreativeWork
232 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
233 https://doi.org/10.1023/a:1010933404324
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nrd2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005793977
236 https://doi.org/10.1038/nrd2201
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1471-2105-9-363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837599
239 https://doi.org/10.1186/1471-2105-9-363
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1756-0500-4-504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042459618
242 https://doi.org/10.1186/1756-0500-4-504
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1758-2946-1-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773517
245 https://doi.org/10.1186/1758-2946-1-21
246 rdf:type schema:CreativeWork
247 grid-institutes:grid.417639.e schema:alternateName GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India
248 schema:name GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India
249 rdf:type schema:Organization
250 grid-institutes:grid.418099.d schema:alternateName Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India
251 schema:name Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...