Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03-31

AUTHORS

Vinita Periwal, Shireesha Kishtapuram, Vinod Scaria

ABSTRACT

BACKGROUND: The emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens. RESULTS: We show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection. CONCLUSIONS: In the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries. More... »

PAGES

1-1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2210-12-1

DOI

http://dx.doi.org/10.1186/1471-2210-12-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029148442

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22463123


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitubercular Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Negative Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Positive Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Multidrug-Resistant", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), New Delhi 110007, India", 
          "id": "http://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), New Delhi 110007, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Periwal", 
        "givenName": "Vinita", 
        "id": "sg:person.01050057346.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050057346.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishtapuram", 
        "givenName": "Shireesha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), New Delhi 110007, India", 
          "id": "http://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), New Delhi 110007, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scaria", 
        "givenName": "Vinod", 
        "id": "sg:person.01312136117.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312136117.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11095-011-0413-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018464369", 
          "https://doi.org/10.1007/s11095-011-0413-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005793977", 
          "https://doi.org/10.1038/nrd2201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022837599", 
          "https://doi.org/10.1186/1471-2105-9-363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-4-504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042459618", 
          "https://doi.org/10.1186/1756-0500-4-504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-1-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773517", 
          "https://doi.org/10.1186/1758-2946-1-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007465528199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030680500", 
          "https://doi.org/10.1023/a:1007465528199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-31", 
    "datePublishedReg": "2012-03-31", 
    "description": "BACKGROUND: The emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens.\nRESULTS: We show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection.\nCONCLUSIONS: In the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2210-12-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024637", 
        "issn": [
          "1471-2210"
        ], 
        "name": "BMC Pharmacology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "high-throughput biological screens", 
      "machine learning tools", 
      "availability of datasets", 
      "machine learning", 
      "supervised state", 
      "art classifiers", 
      "accurate classifier", 
      "effective predictive model", 
      "predictive model", 
      "virtual high-throughput screen", 
      "silico predictive models", 
      "large datasets", 
      "computational methods", 
      "classifier", 
      "learning tool", 
      "public domain", 
      "dataset", 
      "screening datasets", 
      "large molecular libraries", 
      "computational model", 
      "virtual screen", 
      "random selection", 
      "large scale", 
      "biological screens", 
      "cost", 
      "high-throughput virtual screen", 
      "learning", 
      "descriptors", 
      "domain", 
      "model", 
      "screen", 
      "plausible propositions", 
      "library", 
      "molecular descriptors", 
      "need", 
      "tool", 
      "method", 
      "selection", 
      "time", 
      "discovery", 
      "availability", 
      "efforts", 
      "data", 
      "world", 
      "proposition", 
      "molecular libraries", 
      "Further analysis", 
      "AROC", 
      "state", 
      "emergence", 
      "analysis", 
      "high-throughput screen", 
      "addition", 
      "scale", 
      "values", 
      "activity", 
      "BCR values", 
      "anti-tubercular activity", 
      "study", 
      "fold enrichment", 
      "unmet need", 
      "molecules", 
      "enrichment", 
      "pandemic proportions", 
      "novel molecules", 
      "throughput screen", 
      "paucity", 
      "multi-drug resistant tuberculosis", 
      "approach", 
      "proportion", 
      "novel therapeutics", 
      "therapeutics", 
      "resistant tuberculosis", 
      "assays", 
      "present study", 
      "tuberculosis", 
      "imbalanced (minority class ratio: 0.6%) large dataset", 
      "anti-tubercular molecules", 
      "reasonable AROC", 
      "high-throughput chemical biology screening datasets", 
      "chemical biology screening datasets", 
      "biology screening datasets"
    ], 
    "name": "Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets", 
    "pagination": "1-1", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029148442"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2210-12-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22463123"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2210-12-1", 
      "https://app.dimensions.ai/details/publication/pub.1029148442"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_576.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2210-12-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      22 PREDICATES      131 URIs      116 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2210-12-1 schema:about N038d570d53344b51bb2c9237c0fd6e25
2 N127c97b9ebde46fc812e0fbdf3abbd5f
3 N4728f0b4ce5a46b590adb1de861f2fe2
4 N5bbb05ec11d8410fb030c4104a0fc30b
5 N619e6e57ac0b4709a75ecc6940d0e147
6 N72e8a09c024a45b49adb782e73392209
7 N80d46debff68438c9ef68be4c92ca163
8 N946360d7bd9b414eb979e091085d51b2
9 Na1a43ac532884a89bfd7344224d6332c
10 Na96fe5301d1348a1bcd6805fa896c57e
11 Nafd4e6d0929e4e2589fd744eae2bb27b
12 Nd0fab26f33624d5085e5e476411b9100
13 Ne126f65b5694420ab1e7d4b4e8e379ad
14 Ne18d5728e1d1473eb6c4e65ac0c0e526
15 Ne883afb845c24d29b8a94ffa77efbd16
16 Nfc66f49c1ce64013858161a9940306ad
17 anzsrc-for:11
18 anzsrc-for:1115
19 schema:author Nbc4aae3404f5427cad6177bb25f83bdb
20 schema:citation sg:pub.10.1007/s11095-011-0413-x
21 sg:pub.10.1023/a:1007465528199
22 sg:pub.10.1023/a:1010933404324
23 sg:pub.10.1038/nrd2201
24 sg:pub.10.1186/1471-2105-9-363
25 sg:pub.10.1186/1756-0500-4-504
26 sg:pub.10.1186/1758-2946-1-21
27 schema:datePublished 2012-03-31
28 schema:datePublishedReg 2012-03-31
29 schema:description BACKGROUND: The emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens. RESULTS: We show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection. CONCLUSIONS: In the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N7068293013c74948a2472c109ab7ccae
34 N7a583e2626064756898b343e3eee100a
35 sg:journal.1024637
36 schema:keywords AROC
37 BCR values
38 Further analysis
39 accurate classifier
40 activity
41 addition
42 analysis
43 anti-tubercular activity
44 anti-tubercular molecules
45 approach
46 art classifiers
47 assays
48 availability
49 availability of datasets
50 biological screens
51 biology screening datasets
52 chemical biology screening datasets
53 classifier
54 computational methods
55 computational model
56 cost
57 data
58 dataset
59 descriptors
60 discovery
61 domain
62 effective predictive model
63 efforts
64 emergence
65 enrichment
66 fold enrichment
67 high-throughput biological screens
68 high-throughput chemical biology screening datasets
69 high-throughput screen
70 high-throughput virtual screen
71 imbalanced (minority class ratio: 0.6%) large dataset
72 large datasets
73 large molecular libraries
74 large scale
75 learning
76 learning tool
77 library
78 machine learning
79 machine learning tools
80 method
81 model
82 molecular descriptors
83 molecular libraries
84 molecules
85 multi-drug resistant tuberculosis
86 need
87 novel molecules
88 novel therapeutics
89 pandemic proportions
90 paucity
91 plausible propositions
92 predictive model
93 present study
94 proportion
95 proposition
96 public domain
97 random selection
98 reasonable AROC
99 resistant tuberculosis
100 scale
101 screen
102 screening datasets
103 selection
104 silico predictive models
105 state
106 study
107 supervised state
108 therapeutics
109 throughput screen
110 time
111 tool
112 tuberculosis
113 unmet need
114 values
115 virtual high-throughput screen
116 virtual screen
117 world
118 schema:name Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets
119 schema:pagination 1-1
120 schema:productId N75b5a1851f9c4522bd11ebe05caabd77
121 N7cfd3072055b4d519e1314ccf9b7c0a2
122 Naa9f06ad0ec34a81bb8823dfe48a1f7f
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029148442
124 https://doi.org/10.1186/1471-2210-12-1
125 schema:sdDatePublished 2021-12-01T19:26
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N6c16e31aa292497b8401e711a6895a37
128 schema:url https://doi.org/10.1186/1471-2210-12-1
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N038d570d53344b51bb2c9237c0fd6e25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 N127c97b9ebde46fc812e0fbdf3abbd5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Artificial Intelligence
137 rdf:type schema:DefinedTerm
138 N4728f0b4ce5a46b590adb1de861f2fe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Software
140 rdf:type schema:DefinedTerm
141 N4c737c320a2941a78f449bc794da7f33 rdf:first sg:person.01312136117.75
142 rdf:rest rdf:nil
143 N5bbb05ec11d8410fb030c4104a0fc30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Algorithms
145 rdf:type schema:DefinedTerm
146 N619e6e57ac0b4709a75ecc6940d0e147 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Predictive Value of Tests
148 rdf:type schema:DefinedTerm
149 N6c16e31aa292497b8401e711a6895a37 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N7068293013c74948a2472c109ab7ccae schema:volumeNumber 12
152 rdf:type schema:PublicationVolume
153 N72e8a09c024a45b49adb782e73392209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Antitubercular Agents
155 rdf:type schema:DefinedTerm
156 N75b5a1851f9c4522bd11ebe05caabd77 schema:name pubmed_id
157 schema:value 22463123
158 rdf:type schema:PropertyValue
159 N7a583e2626064756898b343e3eee100a schema:issueNumber 1
160 rdf:type schema:PublicationIssue
161 N7cfd3072055b4d519e1314ccf9b7c0a2 schema:name dimensions_id
162 schema:value pub.1029148442
163 rdf:type schema:PropertyValue
164 N80d46debff68438c9ef68be4c92ca163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name False Negative Reactions
166 rdf:type schema:DefinedTerm
167 N946360d7bd9b414eb979e091085d51b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Computer Simulation
169 rdf:type schema:DefinedTerm
170 Na1a43ac532884a89bfd7344224d6332c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Mycobacterium tuberculosis
172 rdf:type schema:DefinedTerm
173 Na96fe5301d1348a1bcd6805fa896c57e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Models, Theoretical
175 rdf:type schema:DefinedTerm
176 Naa9f06ad0ec34a81bb8823dfe48a1f7f schema:name doi
177 schema:value 10.1186/1471-2210-12-1
178 rdf:type schema:PropertyValue
179 Nafd4e6d0929e4e2589fd744eae2bb27b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Tuberculosis, Multidrug-Resistant
181 rdf:type schema:DefinedTerm
182 Nbc4aae3404f5427cad6177bb25f83bdb rdf:first sg:person.01050057346.38
183 rdf:rest Nbf559a9511ce4b568f60ad9e12cd45cd
184 Nbf559a9511ce4b568f60ad9e12cd45cd rdf:first Ne0f236191d404c2a83ff9b85c03e4433
185 rdf:rest N4c737c320a2941a78f449bc794da7f33
186 Nd0fab26f33624d5085e5e476411b9100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name High-Throughput Screening Assays
188 rdf:type schema:DefinedTerm
189 Ne0f236191d404c2a83ff9b85c03e4433 schema:affiliation grid-institutes:grid.418099.d
190 schema:familyName Kishtapuram
191 schema:givenName Shireesha
192 rdf:type schema:Person
193 Ne126f65b5694420ab1e7d4b4e8e379ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Drug Discovery
195 rdf:type schema:DefinedTerm
196 Ne18d5728e1d1473eb6c4e65ac0c0e526 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Bayes Theorem
198 rdf:type schema:DefinedTerm
199 Ne883afb845c24d29b8a94ffa77efbd16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name False Positive Reactions
201 rdf:type schema:DefinedTerm
202 Nfc66f49c1ce64013858161a9940306ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Databases, Genetic
204 rdf:type schema:DefinedTerm
205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
206 schema:name Medical and Health Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
209 schema:name Pharmacology and Pharmaceutical Sciences
210 rdf:type schema:DefinedTerm
211 sg:journal.1024637 schema:issn 1471-2210
212 schema:name BMC Pharmacology
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01050057346.38 schema:affiliation grid-institutes:grid.417639.e
216 schema:familyName Periwal
217 schema:givenName Vinita
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050057346.38
219 rdf:type schema:Person
220 sg:person.01312136117.75 schema:affiliation grid-institutes:grid.417639.e
221 schema:familyName Scaria
222 schema:givenName Vinod
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312136117.75
224 rdf:type schema:Person
225 sg:pub.10.1007/s11095-011-0413-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018464369
226 https://doi.org/10.1007/s11095-011-0413-x
227 rdf:type schema:CreativeWork
228 sg:pub.10.1023/a:1007465528199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030680500
229 https://doi.org/10.1023/a:1007465528199
230 rdf:type schema:CreativeWork
231 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
232 https://doi.org/10.1023/a:1010933404324
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nrd2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005793977
235 https://doi.org/10.1038/nrd2201
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1471-2105-9-363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837599
238 https://doi.org/10.1186/1471-2105-9-363
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1756-0500-4-504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042459618
241 https://doi.org/10.1186/1756-0500-4-504
242 rdf:type schema:CreativeWork
243 sg:pub.10.1186/1758-2946-1-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773517
244 https://doi.org/10.1186/1758-2946-1-21
245 rdf:type schema:CreativeWork
246 grid-institutes:grid.417639.e schema:alternateName GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), New Delhi 110007, India
247 schema:name GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), New Delhi 110007, India
248 rdf:type schema:Organization
249 grid-institutes:grid.418099.d schema:alternateName Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India
250 schema:name Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...