Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Vinita Periwal, Shireesha Kishtapuram, Open Source Drug Discovery Consortium, Vinod Scaria

ABSTRACT

BACKGROUND: The emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens. RESULTS: We show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection. CONCLUSIONS: In the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2210-12-1

DOI

http://dx.doi.org/10.1186/1471-2210-12-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029148442

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22463123


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitubercular Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Negative Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Positive Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Multidrug-Resistant", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Integrative Biology", 
          "id": "https://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Periwal", 
        "givenName": "Vinita", 
        "id": "sg:person.01050057346.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050057346.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Council of Scientific and Industrial Research", 
          "id": "https://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishtapuram", 
        "givenName": "Shireesha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Council of Scientific and Industrial Research", 
          "id": "https://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Open Source Drug Discovery Consortium", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Integrative Biology", 
          "id": "https://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scaria", 
        "givenName": "Vinod", 
        "id": "sg:person.01312136117.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312136117.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrd2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005793977", 
          "https://doi.org/10.1038/nrd2201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005793977", 
          "https://doi.org/10.1038/nrd2201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007164886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007164886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2009.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011466227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138620708785739899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015192016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b917766c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015723933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b917766c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015723933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2010.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016783852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-011-0413-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018464369", 
          "https://doi.org/10.1007/s11095-011-0413-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312129.312220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021956833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022837599", 
          "https://doi.org/10.1186/1471-2105-9-363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmgm.2009.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026581446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007465528199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030680500", 
          "https://doi.org/10.1023/a:1007465528199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2010.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033614819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-1-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773517", 
          "https://doi.org/10.1186/1758-2946-1-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp100103e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037327679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp100103e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037327679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2009.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039685859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-4-504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042459618", 
          "https://doi.org/10.1186/1756-0500-4-504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-4-504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042459618", 
          "https://doi.org/10.1186/1756-0500-4-504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.108.023507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043479886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0mb00104j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci049847v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci049847v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci6002619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci6002619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138620709788167980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069174545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156802608786786589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069193759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.41.5.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083087371"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: The emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens.\nRESULTS: We show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection.\nCONCLUSIONS: In the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2210-12-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024637", 
        "issn": [
          "1471-2210"
        ], 
        "name": "BMC Pharmacology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8adbe4c96f5a72c7232fb07d2163a427855e2d3caf785932a79d928e43f8541e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22463123"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967806"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2210-12-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029148442"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2210-12-1", 
      "https://app.dimensions.ai/details/publication/pub.1029148442"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2210-12-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2210-12-1'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      69 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2210-12-1 schema:about N12421fc56c4e43b5a7628eaa52e8954f
2 N229b202508a5446ea7d9f91bf10c892f
3 N4bb50e3245a2415f8fce1ee65180758f
4 N55cb42f42aa04e068e588fca66bafaa5
5 N590e40548c73456ebdaa1d638d0987db
6 N5e3497f35e9646f7bce1a5341bfa999c
7 N65a4bb07d5eb46b88d52f0cb402ffce9
8 N81c536b73a834876bc0348c111e8c51e
9 N84497bbd770d4e629406cbfb04240a0b
10 Na57b39b27cfa4f9f9ebd80b6c125fccc
11 Ncbf4fe4dcf394abcbe73e2ec920f1091
12 Nd0266add210f4e57afe10e62c43cad23
13 Nd9d64e3ed1f94fb48a54e8d94d8a182a
14 Ne73385ab41a54864894d7cfb8e18a07e
15 Nf23f88fd470f4956b7428eb70180dfab
16 Nf77fd21ef6c342d6b2c264e7ac3c4869
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author N0d3f5d5378c54d29919e8fdc7c58e6cf
20 schema:citation sg:pub.10.1007/s11095-011-0413-x
21 sg:pub.10.1023/a:1007465528199
22 sg:pub.10.1023/a:1010933404324
23 sg:pub.10.1038/nrd2201
24 sg:pub.10.1186/1471-2105-9-363
25 sg:pub.10.1186/1756-0500-4-504
26 sg:pub.10.1186/1758-2946-1-21
27 https://doi.org/10.1016/j.drudis.2010.10.003
28 https://doi.org/10.1016/j.jmgm.2009.10.001
29 https://doi.org/10.1016/j.tim.2010.10.005
30 https://doi.org/10.1016/j.tube.2009.05.008
31 https://doi.org/10.1016/j.tube.2009.07.006
32 https://doi.org/10.1021/ci049847v
33 https://doi.org/10.1021/ci6002619
34 https://doi.org/10.1021/mp100103e
35 https://doi.org/10.1039/b917766c
36 https://doi.org/10.1039/c0mb00104j
37 https://doi.org/10.1093/nar/gkp456
38 https://doi.org/10.1124/dmd.108.023507
39 https://doi.org/10.1128/aac.41.5.1004
40 https://doi.org/10.1145/312129.312220
41 https://doi.org/10.2174/138620708785739899
42 https://doi.org/10.2174/138620709788167980
43 https://doi.org/10.2174/156802608786786589
44 schema:datePublished 2012-12
45 schema:datePublishedReg 2012-12-01
46 schema:description BACKGROUND: The emergence of Multi-drug resistant tuberculosis in pandemic proportions throughout the world and the paucity of novel therapeutics for tuberculosis have re-iterated the need to accelerate the discovery of novel molecules with anti-tubercular activity. Though high-throughput screens for anti-tubercular activity are available, they are expensive, tedious and time-consuming to be performed on large scales. Thus, there remains an unmet need to prioritize the molecules that are taken up for biological screens to save on cost and time. Computational methods including Machine Learning have been widely employed to build classifiers for high-throughput virtual screens to prioritize molecules for further analysis. The availability of datasets based on high-throughput biological screens or assays in public domain makes computational methods a plausible proposition for building predictive models. In addition, this approach would save significantly on the cost, effort and time required to run high throughput screens. RESULTS: We show that by using four supervised state-of-the-art classifiers (SMO, Random Forest, Naive Bayes and J48) we are able to generate in-silico predictive models on an extremely imbalanced (minority class ratio: 0.6%) large dataset of anti-tubercular molecules with reasonable AROC (0.6-0.75) and BCR (60-66%) values. Moreover, these models are able to provide 3-4 fold enrichment over random selection. CONCLUSIONS: In the present study, we have used the data from in-vitro screens for anti-tubercular activity from a high-throughput screen available in public domain to build highly accurate classifiers based on molecular descriptors of the molecules. We show that Machine Learning tools can be used to build highly effective predictive models for virtual high-throughput screens to prioritize molecules from large molecular libraries.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N259f6ce850af491aa70dd62d21fcb9e6
51 N7ac1ec97faab44ee9b01eb112304c94e
52 sg:journal.1024637
53 schema:name Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets
54 schema:pagination 1
55 schema:productId N11d3488bdbbb406eb8bb38ab987d70d7
56 N13bb5d6a6ff14e3986b15e17c81d6e20
57 N5600edeb50fb476cb4d15cecc3ef41b7
58 Nca524b97681b441dadef480445f97ed3
59 Nce7d51e068194f6f8bb30807169e2faa
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029148442
61 https://doi.org/10.1186/1471-2210-12-1
62 schema:sdDatePublished 2019-04-11T01:58
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nd155be7f566541f182a746ee263805be
65 schema:url http://link.springer.com/10.1186%2F1471-2210-12-1
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0d3f5d5378c54d29919e8fdc7c58e6cf rdf:first sg:person.01050057346.38
70 rdf:rest Ne9a70b6ac3284e429cc9e601c8b0bf8c
71 N11d3488bdbbb406eb8bb38ab987d70d7 schema:name readcube_id
72 schema:value 8adbe4c96f5a72c7232fb07d2163a427855e2d3caf785932a79d928e43f8541e
73 rdf:type schema:PropertyValue
74 N12421fc56c4e43b5a7628eaa52e8954f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Predictive Value of Tests
76 rdf:type schema:DefinedTerm
77 N13bb5d6a6ff14e3986b15e17c81d6e20 schema:name pubmed_id
78 schema:value 22463123
79 rdf:type schema:PropertyValue
80 N229b202508a5446ea7d9f91bf10c892f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name High-Throughput Screening Assays
82 rdf:type schema:DefinedTerm
83 N259f6ce850af491aa70dd62d21fcb9e6 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N46269ab96b6d4f8a84f1e7150dae65ac rdf:first sg:person.01312136117.75
86 rdf:rest rdf:nil
87 N4bb50e3245a2415f8fce1ee65180758f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Antitubercular Agents
89 rdf:type schema:DefinedTerm
90 N55cb42f42aa04e068e588fca66bafaa5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Bayes Theorem
92 rdf:type schema:DefinedTerm
93 N5600edeb50fb476cb4d15cecc3ef41b7 schema:name dimensions_id
94 schema:value pub.1029148442
95 rdf:type schema:PropertyValue
96 N590e40548c73456ebdaa1d638d0987db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Tuberculosis, Multidrug-Resistant
98 rdf:type schema:DefinedTerm
99 N5e3497f35e9646f7bce1a5341bfa999c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Computer Simulation
101 rdf:type schema:DefinedTerm
102 N65a4bb07d5eb46b88d52f0cb402ffce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Mycobacterium tuberculosis
104 rdf:type schema:DefinedTerm
105 N7ac1ec97faab44ee9b01eb112304c94e schema:volumeNumber 12
106 rdf:type schema:PublicationVolume
107 N81c536b73a834876bc0348c111e8c51e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Models, Theoretical
109 rdf:type schema:DefinedTerm
110 N84497bbd770d4e629406cbfb04240a0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name False Negative Reactions
112 rdf:type schema:DefinedTerm
113 Na57b39b27cfa4f9f9ebd80b6c125fccc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Drug Discovery
115 rdf:type schema:DefinedTerm
116 Nb34553a84cfd4dca9327d9687935a319 rdf:first Nb87bc3755b5d4e6baaa39ee2f31872e3
117 rdf:rest N46269ab96b6d4f8a84f1e7150dae65ac
118 Nb87bc3755b5d4e6baaa39ee2f31872e3 schema:affiliation https://www.grid.ac/institutes/grid.418099.d
119 schema:familyName Open Source Drug Discovery Consortium
120 rdf:type schema:Person
121 Nca524b97681b441dadef480445f97ed3 schema:name nlm_unique_id
122 schema:value 100967806
123 rdf:type schema:PropertyValue
124 Ncbf4fe4dcf394abcbe73e2ec920f1091 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Algorithms
126 rdf:type schema:DefinedTerm
127 Nce7d51e068194f6f8bb30807169e2faa schema:name doi
128 schema:value 10.1186/1471-2210-12-1
129 rdf:type schema:PropertyValue
130 Nd0266add210f4e57afe10e62c43cad23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name False Positive Reactions
132 rdf:type schema:DefinedTerm
133 Nd155be7f566541f182a746ee263805be schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nd9d64e3ed1f94fb48a54e8d94d8a182a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Software
137 rdf:type schema:DefinedTerm
138 Ne73385ab41a54864894d7cfb8e18a07e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 Ne8ffb8ca922e4a4ab582d393bf7f19c7 schema:affiliation https://www.grid.ac/institutes/grid.418099.d
142 schema:familyName Kishtapuram
143 schema:givenName Shireesha
144 rdf:type schema:Person
145 Ne9a70b6ac3284e429cc9e601c8b0bf8c rdf:first Ne8ffb8ca922e4a4ab582d393bf7f19c7
146 rdf:rest Nb34553a84cfd4dca9327d9687935a319
147 Nf23f88fd470f4956b7428eb70180dfab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Databases, Genetic
149 rdf:type schema:DefinedTerm
150 Nf77fd21ef6c342d6b2c264e7ac3c4869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Artificial Intelligence
152 rdf:type schema:DefinedTerm
153 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
154 schema:name Information and Computing Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
157 schema:name Artificial Intelligence and Image Processing
158 rdf:type schema:DefinedTerm
159 sg:journal.1024637 schema:issn 1471-2210
160 schema:name BMC Pharmacology
161 rdf:type schema:Periodical
162 sg:person.01050057346.38 schema:affiliation https://www.grid.ac/institutes/grid.417639.e
163 schema:familyName Periwal
164 schema:givenName Vinita
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050057346.38
166 rdf:type schema:Person
167 sg:person.01312136117.75 schema:affiliation https://www.grid.ac/institutes/grid.417639.e
168 schema:familyName Scaria
169 schema:givenName Vinod
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312136117.75
171 rdf:type schema:Person
172 sg:pub.10.1007/s11095-011-0413-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018464369
173 https://doi.org/10.1007/s11095-011-0413-x
174 rdf:type schema:CreativeWork
175 sg:pub.10.1023/a:1007465528199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030680500
176 https://doi.org/10.1023/a:1007465528199
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
179 https://doi.org/10.1023/a:1010933404324
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nrd2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005793977
182 https://doi.org/10.1038/nrd2201
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2105-9-363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837599
185 https://doi.org/10.1186/1471-2105-9-363
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1756-0500-4-504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042459618
188 https://doi.org/10.1186/1756-0500-4-504
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1758-2946-1-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773517
191 https://doi.org/10.1186/1758-2946-1-21
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.drudis.2010.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016783852
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.jmgm.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026581446
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.tim.2010.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033614819
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.tube.2009.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011466227
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.tube.2009.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039685859
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/ci049847v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401913
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/ci6002619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404086
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/mp100103e schema:sameAs https://app.dimensions.ai/details/publication/pub.1037327679
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1039/b917766c schema:sameAs https://app.dimensions.ai/details/publication/pub.1015723933
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1039/c0mb00104j schema:sameAs https://app.dimensions.ai/details/publication/pub.1047194989
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/gkp456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007164886
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1124/dmd.108.023507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043479886
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1128/aac.41.5.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083087371
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1145/312129.312220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021956833
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2174/138620708785739899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015192016
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2174/138620709788167980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069174545
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2174/156802608786786589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069193759
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.417639.e schema:alternateName Institute of Genomics and Integrative Biology
228 schema:name GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), 110007, New Delhi, India
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.418099.d schema:alternateName Council of Scientific and Industrial Research
231 schema:name Open Source Drug Discovery Consortium, Council of Scientific and Industrial Research (CSIR, India), New Delhi, India
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...