Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Ann-Britt Nygard, Claus B Jørgensen, Susanna Cirera, Merete Fredholm

ABSTRACT

BACKGROUND: Real-time quantitative PCR (qPCR) is a method for rapid and reliable quantification of mRNA transcription. Internal standards such as reference genes are used to normalise mRNA levels between different samples for an exact comparison of mRNA transcription level. Selection of high quality reference genes is of crucial importance for the interpretation of data generated by real-time qPCR. RESULTS: In this study nine commonly used reference genes were investigated in 17 different pig tissues using real-time qPCR with SYBR green. The genes included beta-actin (ACTB), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase 1 (HPRT1), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB)and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ, SDHA, B2M and GAPDH. CONCLUSION: Expression stability varies greatly between genes. ACTB, RPL4, TPB and HPRT1 were found to have the highest stability across tissues. Based on both expression stability and expression level, our data suggest that ACTB and RPL4 are good reference genes for high abundant transcripts while TPB and HPRT1 are good reference genes for low abundant transcripts in expression studies across different pig tissues. More... »

PAGES

67

References to SciGraph publications

  • 2007-06. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags in GENOME BIOLOGY
  • 2006-12. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A in BMC BIOTECHNOLOGY
  • 2006-12. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR in BMC MOLECULAR BIOLOGY
  • 2005-12. Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization? in JOURNAL OF MOLECULAR MEDICINE
  • 2007-12. Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos in BMC DEVELOPMENTAL BIOLOGY
  • 2006-12. Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids in BMC BIOTECHNOLOGY
  • 2002-07. Differential expression of GAPDH and β-actin in growing collateral arteries in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 2005-12. Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrPgene expression and genetic susceptibility to scrapie in BMC VETERINARY RESEARCH
  • 2002-06. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes in GENOME BIOLOGY
  • 2005-12. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos in BMC DEVELOPMENTAL BIOLOGY
  • 2005-12. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR in BMC MOLECULAR BIOLOGY
  • 2005-01. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes in LABORATORY INVESTIGATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2199-8-67

    DOI

    http://dx.doi.org/10.1186/1471-2199-8-67

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011893506

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17697375


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organic Chemicals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Values", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sus scrofa", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Basic Animal and Veterinary Sciences, Division of Genetics and Bioinformatics, University of Copenhagen, Faculty of Life Sciences, Groennegaardsvej 3, 1870, Frederiksberg, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nygard", 
            "givenName": "Ann-Britt", 
            "id": "sg:person.01046420753.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046420753.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Basic Animal and Veterinary Sciences, Division of Genetics and Bioinformatics, University of Copenhagen, Faculty of Life Sciences, Groennegaardsvej 3, 1870, Frederiksberg, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "J\u00f8rgensen", 
            "givenName": "Claus B", 
            "id": "sg:person.01356506765.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356506765.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Basic Animal and Veterinary Sciences, Division of Genetics and Bioinformatics, University of Copenhagen, Faculty of Life Sciences, Groennegaardsvej 3, 1870, Frederiksberg, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cirera", 
            "givenName": "Susanna", 
            "id": "sg:person.01122032736.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122032736.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Basic Animal and Veterinary Sciences, Division of Genetics and Bioinformatics, University of Copenhagen, Faculty of Life Sciences, Groennegaardsvej 3, 1870, Frederiksberg, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fredholm", 
            "givenName": "Merete", 
            "id": "sg:person.01211334107.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211334107.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-213x-5-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003948467", 
              "https://doi.org/10.1186/1471-213x-5-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/thorax.57.9.765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005545306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/thorax.57.9.765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005545306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2003.11.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005844147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-213x-7-58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013407704", 
              "https://doi.org/10.1186/1471-213x-7-58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013618001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-4-r45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016174151", 
              "https://doi.org/10.1186/gb-2007-8-4-r45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6750-6-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019830196", 
              "https://doi.org/10.1186/1472-6750-6-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/mcpr.2001.0376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020627330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016166127465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026300476", 
              "https://doi.org/10.1023/a:1016166127465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10495399809525893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026382454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00109-005-0703-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035930415", 
              "https://doi.org/10.1007/s00109-005-0703-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00109-005-0703-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035930415", 
              "https://doi.org/10.1007/s00109-005-0703-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6750-6-24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038323300", 
              "https://doi.org/10.1186/1472-6750-6-24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039751959", 
              "https://doi.org/10.1186/gb-2002-3-7-research0034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2199-7-33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040146760", 
              "https://doi.org/10.1186/1471-2199-7-33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-6148-1-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043753527", 
              "https://doi.org/10.1186/1746-6148-1-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/labinvest.3700208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044148244", 
              "https://doi.org/10.1038/labinvest.3700208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/labinvest.3700208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044148244", 
              "https://doi.org/10.1038/labinvest.3700208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/labinvest.3700208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044148244", 
              "https://doi.org/10.1038/labinvest.3700208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2199-6-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045095126", 
              "https://doi.org/10.1186/1471-2199-6-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074544770", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/172460089901400409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074589085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/172460089901400409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074589085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(06)72450-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077294131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-12", 
        "datePublishedReg": "2007-12-01", 
        "description": "BACKGROUND: Real-time quantitative PCR (qPCR) is a method for rapid and reliable quantification of mRNA transcription. Internal standards such as reference genes are used to normalise mRNA levels between different samples for an exact comparison of mRNA transcription level. Selection of high quality reference genes is of crucial importance for the interpretation of data generated by real-time qPCR.\nRESULTS: In this study nine commonly used reference genes were investigated in 17 different pig tissues using real-time qPCR with SYBR green. The genes included beta-actin (ACTB), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase 1 (HPRT1), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB)and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ, SDHA, B2M and GAPDH.\nCONCLUSION: Expression stability varies greatly between genes. ACTB, RPL4, TPB and HPRT1 were found to have the highest stability across tissues. Based on both expression stability and expression level, our data suggest that ACTB and RPL4 are good reference genes for high abundant transcripts while TPB and HPRT1 are good reference genes for low abundant transcripts in expression studies across different pig tissues.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2199-8-67", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1356898", 
            "issn": [
              "1471-2199"
            ], 
            "name": "BMC Molecular Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR", 
        "pagination": "67", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "38aad26e8cbe453fba5ab80e50c559fdce1a7818725d8814548f8f99ed6faca1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17697375"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966983"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2199-8-67"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011893506"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2199-8-67", 
          "https://app.dimensions.ai/details/publication/pub.1011893506"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000504.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2199-8-67"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2199-8-67'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2199-8-67'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2199-8-67'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2199-8-67'


     

    This table displays all metadata directly associated to this object as RDF triples.

    192 TRIPLES      21 PREDICATES      57 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2199-8-67 schema:about N5c7e9ce8c3bb45728a2ba72b974a2942
    2 N6fd6de88c5264256b2e2d283535b553b
    3 N71a4c31dde7b4a0d9e465643658a82db
    4 N784c0dc440484e00a5517ea150d57f11
    5 Na61768e2d9d14c7c9672fbec0ea476aa
    6 Ndaa6d861981d440a9f6b82ef97a64589
    7 Neaeac36968484631b5ed41341e9e8e33
    8 Nfa59bd98ad0c4decb7584c2172939e7c
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N48852c0e0a214c43b11f16d3d7fb82a1
    12 schema:citation sg:pub.10.1007/s00109-005-0703-z
    13 sg:pub.10.1023/a:1016166127465
    14 sg:pub.10.1038/labinvest.3700208
    15 sg:pub.10.1186/1471-213x-5-27
    16 sg:pub.10.1186/1471-213x-7-58
    17 sg:pub.10.1186/1471-2199-6-4
    18 sg:pub.10.1186/1471-2199-7-33
    19 sg:pub.10.1186/1472-6750-6-24
    20 sg:pub.10.1186/1472-6750-6-41
    21 sg:pub.10.1186/1746-6148-1-3
    22 sg:pub.10.1186/gb-2002-3-7-research0034
    23 sg:pub.10.1186/gb-2007-8-4-r45
    24 https://app.dimensions.ai/details/publication/pub.1074544770
    25 https://doi.org/10.1006/mcpr.2001.0376
    26 https://doi.org/10.1016/j.bbrc.2003.11.177
    27 https://doi.org/10.1080/10495399809525893
    28 https://doi.org/10.1093/nar/gkg595
    29 https://doi.org/10.1136/thorax.57.9.765
    30 https://doi.org/10.1177/172460089901400409
    31 https://doi.org/10.3168/jds.s0022-0302(06)72450-x
    32 schema:datePublished 2007-12
    33 schema:datePublishedReg 2007-12-01
    34 schema:description BACKGROUND: Real-time quantitative PCR (qPCR) is a method for rapid and reliable quantification of mRNA transcription. Internal standards such as reference genes are used to normalise mRNA levels between different samples for an exact comparison of mRNA transcription level. Selection of high quality reference genes is of crucial importance for the interpretation of data generated by real-time qPCR. RESULTS: In this study nine commonly used reference genes were investigated in 17 different pig tissues using real-time qPCR with SYBR green. The genes included beta-actin (ACTB), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase 1 (HPRT1), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB)and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ, SDHA, B2M and GAPDH. CONCLUSION: Expression stability varies greatly between genes. ACTB, RPL4, TPB and HPRT1 were found to have the highest stability across tissues. Based on both expression stability and expression level, our data suggest that ACTB and RPL4 are good reference genes for high abundant transcripts while TPB and HPRT1 are good reference genes for low abundant transcripts in expression studies across different pig tissues.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N67a46447d69040a7912874fc35101ac3
    39 N8db8b359bc4d4791adde2236bd17f78d
    40 sg:journal.1356898
    41 schema:name Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR
    42 schema:pagination 67
    43 schema:productId N075156d9eb4440a4832895e1693f61a0
    44 N1800a6a52a144c27b875b80f1da87fb3
    45 N4d752ca465844a3ebc760dfd058e58fb
    46 N8358caab7a3047688e3f09acddb23b3a
    47 Nd690205102e34aa1954be4cbe50f661b
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011893506
    49 https://doi.org/10.1186/1471-2199-8-67
    50 schema:sdDatePublished 2019-04-10T14:07
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nd55fb9c3361e4bc99a8b8c21445b39c9
    53 schema:url http://link.springer.com/10.1186%2F1471-2199-8-67
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N075156d9eb4440a4832895e1693f61a0 schema:name dimensions_id
    58 schema:value pub.1011893506
    59 rdf:type schema:PropertyValue
    60 N1800a6a52a144c27b875b80f1da87fb3 schema:name doi
    61 schema:value 10.1186/1471-2199-8-67
    62 rdf:type schema:PropertyValue
    63 N48852c0e0a214c43b11f16d3d7fb82a1 rdf:first sg:person.01046420753.56
    64 rdf:rest Nfc98f6daaab0424ca6da8c2cae78bef1
    65 N4d752ca465844a3ebc760dfd058e58fb schema:name nlm_unique_id
    66 schema:value 100966983
    67 rdf:type schema:PropertyValue
    68 N548fdd083f8e4d01a80c18a2a0766f50 rdf:first sg:person.01122032736.64
    69 rdf:rest Nb7431a5c426b4f5ca7edf41a43d327c0
    70 N5c7e9ce8c3bb45728a2ba72b974a2942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Sus scrofa
    72 rdf:type schema:DefinedTerm
    73 N67a46447d69040a7912874fc35101ac3 schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 N6fd6de88c5264256b2e2d283535b553b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Gene Expression
    77 rdf:type schema:DefinedTerm
    78 N71a4c31dde7b4a0d9e465643658a82db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Polymerase Chain Reaction
    80 rdf:type schema:DefinedTerm
    81 N784c0dc440484e00a5517ea150d57f11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Organic Chemicals
    83 rdf:type schema:DefinedTerm
    84 N8358caab7a3047688e3f09acddb23b3a schema:name readcube_id
    85 schema:value 38aad26e8cbe453fba5ab80e50c559fdce1a7818725d8814548f8f99ed6faca1
    86 rdf:type schema:PropertyValue
    87 N8db8b359bc4d4791adde2236bd17f78d schema:volumeNumber 8
    88 rdf:type schema:PublicationVolume
    89 Na61768e2d9d14c7c9672fbec0ea476aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Fluorescent Dyes
    91 rdf:type schema:DefinedTerm
    92 Nb7431a5c426b4f5ca7edf41a43d327c0 rdf:first sg:person.01211334107.85
    93 rdf:rest rdf:nil
    94 Nd55fb9c3361e4bc99a8b8c21445b39c9 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Nd690205102e34aa1954be4cbe50f661b schema:name pubmed_id
    97 schema:value 17697375
    98 rdf:type schema:PropertyValue
    99 Ndaa6d861981d440a9f6b82ef97a64589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Reference Values
    101 rdf:type schema:DefinedTerm
    102 Neaeac36968484631b5ed41341e9e8e33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name RNA
    104 rdf:type schema:DefinedTerm
    105 Nfa59bd98ad0c4decb7584c2172939e7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Animals
    107 rdf:type schema:DefinedTerm
    108 Nfc98f6daaab0424ca6da8c2cae78bef1 rdf:first sg:person.01356506765.03
    109 rdf:rest N548fdd083f8e4d01a80c18a2a0766f50
    110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Biological Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Genetics
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1356898 schema:issn 1471-2199
    117 schema:name BMC Molecular Biology
    118 rdf:type schema:Periodical
    119 sg:person.01046420753.56 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    120 schema:familyName Nygard
    121 schema:givenName Ann-Britt
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046420753.56
    123 rdf:type schema:Person
    124 sg:person.01122032736.64 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    125 schema:familyName Cirera
    126 schema:givenName Susanna
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122032736.64
    128 rdf:type schema:Person
    129 sg:person.01211334107.85 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    130 schema:familyName Fredholm
    131 schema:givenName Merete
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211334107.85
    133 rdf:type schema:Person
    134 sg:person.01356506765.03 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    135 schema:familyName Jørgensen
    136 schema:givenName Claus B
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356506765.03
    138 rdf:type schema:Person
    139 sg:pub.10.1007/s00109-005-0703-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035930415
    140 https://doi.org/10.1007/s00109-005-0703-z
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1023/a:1016166127465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026300476
    143 https://doi.org/10.1023/a:1016166127465
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/labinvest.3700208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044148244
    146 https://doi.org/10.1038/labinvest.3700208
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1186/1471-213x-5-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948467
    149 https://doi.org/10.1186/1471-213x-5-27
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1186/1471-213x-7-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013407704
    152 https://doi.org/10.1186/1471-213x-7-58
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1186/1471-2199-6-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045095126
    155 https://doi.org/10.1186/1471-2199-6-4
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1186/1471-2199-7-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040146760
    158 https://doi.org/10.1186/1471-2199-7-33
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1186/1472-6750-6-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038323300
    161 https://doi.org/10.1186/1472-6750-6-24
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1186/1472-6750-6-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019830196
    164 https://doi.org/10.1186/1472-6750-6-41
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1186/1746-6148-1-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043753527
    167 https://doi.org/10.1186/1746-6148-1-3
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
    170 https://doi.org/10.1186/gb-2002-3-7-research0034
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1186/gb-2007-8-4-r45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016174151
    173 https://doi.org/10.1186/gb-2007-8-4-r45
    174 rdf:type schema:CreativeWork
    175 https://app.dimensions.ai/details/publication/pub.1074544770 schema:CreativeWork
    176 https://doi.org/10.1006/mcpr.2001.0376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020627330
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.bbrc.2003.11.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005844147
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1080/10495399809525893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026382454
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1093/nar/gkg595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618001
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1136/thorax.57.9.765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005545306
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1177/172460089901400409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074589085
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.3168/jds.s0022-0302(06)72450-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077294131
    189 rdf:type schema:CreativeWork
    190 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    191 schema:name Department of Basic Animal and Veterinary Sciences, Division of Genetics and Bioinformatics, University of Copenhagen, Faculty of Life Sciences, Groennegaardsvej 3, 1870, Frederiksberg, Denmark
    192 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...