A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Ray Fall, Daniel B Kearns, Tam Nguyen

ABSTRACT

BACKGROUND: We have recently shown that undomesticated strains of Bacillus subtilis can extensively colonize the surfaces of rich, semi-solid media, by a flagellum-independent mechanism and suggested that sliding motility is responsible for surface migration. Here we have used a flagella-less hag null mutant to examine and confirm sliding motility. RESULTS: Using a defined semi-solid medium we determined that a B. subtilis hag mutant colonized the surface in two stages, first as tendril-like clusters of cells followed by a profuse pellicle-like film. We determined the levels of macro- and micro-nutrients required for the tendril-to-film transition. Sufficient levels of each of the macronutrients, glycerol, Na-glutamate, and Na-phosphate, and inorganic nutrients, K+, Mg2+, Fe2+ and Mn2+, were required for robust film formation. The K+ requirement was quantified in more detail, and the thresholds for complete tendril coverage (50 microM KCl) or film coverage (2-3 mM KCl) were determined. In addition, disruption of the genes for the higher affinity K+ transporter (KtrAB), but not the lower affinity K+ transporter (KtrCD), strongly inhibited the formation of both tendrils and films, and could be partially overcome by high levels of KCl. Examination of hag tendrils by confocal scanning laser microscopy revealed that tendrils are multicellular structures, but that the cells are not as highly organized as cells in wild-type B. subtilis pellicles. CONCLUSION: These results suggest that B. subtilis can use sliding motility to colonize surfaces, using a tendril-like growth mode when various macronutrients or micronutrients are limiting. If nutrients are balanced and sufficient, the surfaces between tendrils can be colonized by robust surface films. Sliding motility may represent a strategy for nutrient-deprived cells to colonize surfaces in natural environments, such as plant roots, and the media described here may be useful in investigations of this growth phenotype. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2180-6-31

DOI

http://dx.doi.org/10.1186/1471-2180-6-31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047726955

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16545127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacillus subtilis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Culture Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flagella", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Confocal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium Chloride", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, 80309-0215, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fall", 
        "givenName": "Ray", 
        "id": "sg:person.01117314472.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117314472.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indiana University Bloomington", 
          "id": "https://www.grid.ac/institutes/grid.411377.7", 
          "name": [
            "Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., 02138, Cambridge, MA, USA", 
            "Department of Biology, Indiana University Bloomington, 47405-7000, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kearns", 
        "givenName": "Daniel B", 
        "id": "sg:person.01113302557.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113302557.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, 80309-0215, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Tam", 
        "id": "sg:person.01150023446.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150023446.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.060030097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005689362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(98)00016-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006624135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191384198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006833663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2004.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009189019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.187.24.8462-8469.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009636837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.56.012302.160938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1078/0723-2020-00267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016334718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.185.4.1289-1298.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017344910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.183.19.5718-5724.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020391162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(02)00806-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022047631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.182.15.4348-4351.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027225569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2003.03584.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030269754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.57.030502.091014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032589705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.7036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033931675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.7036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033931675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.185.18.5627-5631.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034186083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.4.1158-1164.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037549026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.187.1.65-76.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041124829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.7025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047176378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.7025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047176378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.12.3970-3979.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049677585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2004.03996.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052282475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.25948-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060396570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.171.6.3095-3101.1989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062717951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074554021", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076973106", 
          "https://doi.org/10.1007/bf00280011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078904336", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080489044", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083232658", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: We have recently shown that undomesticated strains of Bacillus subtilis can extensively colonize the surfaces of rich, semi-solid media, by a flagellum-independent mechanism and suggested that sliding motility is responsible for surface migration. Here we have used a flagella-less hag null mutant to examine and confirm sliding motility.\nRESULTS: Using a defined semi-solid medium we determined that a B. subtilis hag mutant colonized the surface in two stages, first as tendril-like clusters of cells followed by a profuse pellicle-like film. We determined the levels of macro- and micro-nutrients required for the tendril-to-film transition. Sufficient levels of each of the macronutrients, glycerol, Na-glutamate, and Na-phosphate, and inorganic nutrients, K+, Mg2+, Fe2+ and Mn2+, were required for robust film formation. The K+ requirement was quantified in more detail, and the thresholds for complete tendril coverage (50 microM KCl) or film coverage (2-3 mM KCl) were determined. In addition, disruption of the genes for the higher affinity K+ transporter (KtrAB), but not the lower affinity K+ transporter (KtrCD), strongly inhibited the formation of both tendrils and films, and could be partially overcome by high levels of KCl. Examination of hag tendrils by confocal scanning laser microscopy revealed that tendrils are multicellular structures, but that the cells are not as highly organized as cells in wild-type B. subtilis pellicles.\nCONCLUSION: These results suggest that B. subtilis can use sliding motility to colonize surfaces, using a tendril-like growth mode when various macronutrients or micronutrients are limiting. If nutrients are balanced and sufficient, the surfaces between tendrils can be colonized by robust surface films. Sliding motility may represent a strategy for nutrient-deprived cells to colonize surfaces in natural environments, such as plant roots, and the media described here may be useful in investigations of this growth phenotype.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2180-6-31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2634992", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2381795", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2508702", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2566988", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024253", 
        "issn": [
          "1471-2180"
        ], 
        "name": "BMC Microbiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant", 
    "pagination": "31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e35bd97cfb3aca5496ec3c621693d88501aa8357572857367715a9849b1c96d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16545127"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966981"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2180-6-31"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047726955"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2180-6-31", 
      "https://app.dimensions.ai/details/publication/pub.1047726955"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2180-6-31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-6-31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-6-31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-6-31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-6-31'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2180-6-31 schema:about N00d0cd6d9f0f482f915a322102157cd4
2 N16d41d274bb34b47ba09c3678a73f0a2
3 N4c0c76e3bee646399f9dce6a597faae6
4 N7bffea234d2d41fdb86982efcaace583
5 N9768838ba80d43af8c942c9745d0dfee
6 Na6434e5778844258964d6f4b0d6a5862
7 Nb1403783f8d342039789904dc7da0307
8 Nc4a74c8eea834a6cb9772ce602a5e569
9 Nd28506bb86594f15b7617abaebfae2d9
10 anzsrc-for:09
11 anzsrc-for:0912
12 schema:author Ne1058be15db84a26bf61714ab7d27fbf
13 schema:citation sg:pub.10.1007/bf00280011
14 https://app.dimensions.ai/details/publication/pub.1074554021
15 https://app.dimensions.ai/details/publication/pub.1078904336
16 https://app.dimensions.ai/details/publication/pub.1080489044
17 https://app.dimensions.ai/details/publication/pub.1083232658
18 https://doi.org/10.1016/j.watres.2004.10.009
19 https://doi.org/10.1016/s0141-0229(98)00016-7
20 https://doi.org/10.1016/s0960-9822(02)00806-0
21 https://doi.org/10.1046/j.1365-2958.2003.03584.x
22 https://doi.org/10.1073/pnas.060030097
23 https://doi.org/10.1073/pnas.191384198
24 https://doi.org/10.1078/0723-2020-00267
25 https://doi.org/10.1099/mic.0.25948-0
26 https://doi.org/10.1103/physreve.59.7025
27 https://doi.org/10.1103/physreve.59.7036
28 https://doi.org/10.1111/j.1365-2958.2004.03996.x
29 https://doi.org/10.1128/jb.171.6.3095-3101.1989
30 https://doi.org/10.1128/jb.182.15.4348-4351.2000
31 https://doi.org/10.1128/jb.183.19.5718-5724.2001
32 https://doi.org/10.1128/jb.185.18.5627-5631.2003
33 https://doi.org/10.1128/jb.185.4.1289-1298.2003
34 https://doi.org/10.1128/jb.186.12.3970-3979.2004
35 https://doi.org/10.1128/jb.186.4.1158-1164.2004
36 https://doi.org/10.1128/jb.187.1.65-76.2005
37 https://doi.org/10.1128/jb.187.24.8462-8469.2005
38 https://doi.org/10.1146/annurev.micro.56.012302.160938
39 https://doi.org/10.1146/annurev.micro.57.030502.091014
40 schema:datePublished 2006-12
41 schema:datePublishedReg 2006-12-01
42 schema:description BACKGROUND: We have recently shown that undomesticated strains of Bacillus subtilis can extensively colonize the surfaces of rich, semi-solid media, by a flagellum-independent mechanism and suggested that sliding motility is responsible for surface migration. Here we have used a flagella-less hag null mutant to examine and confirm sliding motility. RESULTS: Using a defined semi-solid medium we determined that a B. subtilis hag mutant colonized the surface in two stages, first as tendril-like clusters of cells followed by a profuse pellicle-like film. We determined the levels of macro- and micro-nutrients required for the tendril-to-film transition. Sufficient levels of each of the macronutrients, glycerol, Na-glutamate, and Na-phosphate, and inorganic nutrients, K+, Mg2+, Fe2+ and Mn2+, were required for robust film formation. The K+ requirement was quantified in more detail, and the thresholds for complete tendril coverage (50 microM KCl) or film coverage (2-3 mM KCl) were determined. In addition, disruption of the genes for the higher affinity K+ transporter (KtrAB), but not the lower affinity K+ transporter (KtrCD), strongly inhibited the formation of both tendrils and films, and could be partially overcome by high levels of KCl. Examination of hag tendrils by confocal scanning laser microscopy revealed that tendrils are multicellular structures, but that the cells are not as highly organized as cells in wild-type B. subtilis pellicles. CONCLUSION: These results suggest that B. subtilis can use sliding motility to colonize surfaces, using a tendril-like growth mode when various macronutrients or micronutrients are limiting. If nutrients are balanced and sufficient, the surfaces between tendrils can be colonized by robust surface films. Sliding motility may represent a strategy for nutrient-deprived cells to colonize surfaces in natural environments, such as plant roots, and the media described here may be useful in investigations of this growth phenotype.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N4d38da7e788a49a4b4a2a3ff70a4292a
47 Nf1ed3e8169034c00b6438341f114b65d
48 sg:journal.1024253
49 schema:name A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant
50 schema:pagination 31
51 schema:productId N00fa321606ea4bab8604fbff4c668ebd
52 N0a5b32c36add4636a467685f1781ef19
53 N5c16f44a97f3433687749327b621e6d9
54 N7df806d61e01415b89e105cadba658e4
55 Nbb31d7de2bcf4a74b23cfff3ce938ff3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047726955
57 https://doi.org/10.1186/1471-2180-6-31
58 schema:sdDatePublished 2019-04-10T14:59
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N8f628530aede4611824b32d770dcb2ce
61 schema:url http://link.springer.com/10.1186%2F1471-2180-6-31
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N00d0cd6d9f0f482f915a322102157cd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Microscopy, Confocal
67 rdf:type schema:DefinedTerm
68 N00fa321606ea4bab8604fbff4c668ebd schema:name pubmed_id
69 schema:value 16545127
70 rdf:type schema:PropertyValue
71 N0a5b32c36add4636a467685f1781ef19 schema:name doi
72 schema:value 10.1186/1471-2180-6-31
73 rdf:type schema:PropertyValue
74 N16d41d274bb34b47ba09c3678a73f0a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Culture Media
76 rdf:type schema:DefinedTerm
77 N26642e9009ad4bbd93183c67dba58e24 rdf:first sg:person.01113302557.29
78 rdf:rest Nd41c6aed43db44778bdb9b5c6c88a28b
79 N4c0c76e3bee646399f9dce6a597faae6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Potassium
81 rdf:type schema:DefinedTerm
82 N4d38da7e788a49a4b4a2a3ff70a4292a schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N5c16f44a97f3433687749327b621e6d9 schema:name readcube_id
85 schema:value e35bd97cfb3aca5496ec3c621693d88501aa8357572857367715a9849b1c96d3
86 rdf:type schema:PropertyValue
87 N7bffea234d2d41fdb86982efcaace583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Potassium Chloride
89 rdf:type schema:DefinedTerm
90 N7df806d61e01415b89e105cadba658e4 schema:name nlm_unique_id
91 schema:value 100966981
92 rdf:type schema:PropertyValue
93 N8f628530aede4611824b32d770dcb2ce schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N9768838ba80d43af8c942c9745d0dfee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Ion Transport
97 rdf:type schema:DefinedTerm
98 Na6434e5778844258964d6f4b0d6a5862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Movement
100 rdf:type schema:DefinedTerm
101 Nb1403783f8d342039789904dc7da0307 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Bacillus subtilis
103 rdf:type schema:DefinedTerm
104 Nbb31d7de2bcf4a74b23cfff3ce938ff3 schema:name dimensions_id
105 schema:value pub.1047726955
106 rdf:type schema:PropertyValue
107 Nc4a74c8eea834a6cb9772ce602a5e569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Mutation
109 rdf:type schema:DefinedTerm
110 Nd28506bb86594f15b7617abaebfae2d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Flagella
112 rdf:type schema:DefinedTerm
113 Nd41c6aed43db44778bdb9b5c6c88a28b rdf:first sg:person.01150023446.82
114 rdf:rest rdf:nil
115 Ne1058be15db84a26bf61714ab7d27fbf rdf:first sg:person.01117314472.64
116 rdf:rest N26642e9009ad4bbd93183c67dba58e24
117 Nf1ed3e8169034c00b6438341f114b65d schema:volumeNumber 6
118 rdf:type schema:PublicationVolume
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:grant.2381795 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2180-6-31
126 rdf:type schema:MonetaryGrant
127 sg:grant.2508702 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2180-6-31
128 rdf:type schema:MonetaryGrant
129 sg:grant.2566988 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2180-6-31
130 rdf:type schema:MonetaryGrant
131 sg:grant.2634992 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2180-6-31
132 rdf:type schema:MonetaryGrant
133 sg:journal.1024253 schema:issn 1471-2180
134 schema:name BMC Microbiology
135 rdf:type schema:Periodical
136 sg:person.01113302557.29 schema:affiliation https://www.grid.ac/institutes/grid.411377.7
137 schema:familyName Kearns
138 schema:givenName Daniel B
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113302557.29
140 rdf:type schema:Person
141 sg:person.01117314472.64 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
142 schema:familyName Fall
143 schema:givenName Ray
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117314472.64
145 rdf:type schema:Person
146 sg:person.01150023446.82 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
147 schema:familyName Nguyen
148 schema:givenName Tam
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150023446.82
150 rdf:type schema:Person
151 sg:pub.10.1007/bf00280011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076973106
152 https://doi.org/10.1007/bf00280011
153 rdf:type schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1074554021 schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1078904336 schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1080489044 schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1083232658 schema:CreativeWork
158 https://doi.org/10.1016/j.watres.2004.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009189019
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0141-0229(98)00016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006624135
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0960-9822(02)00806-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022047631
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1046/j.1365-2958.2003.03584.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030269754
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.060030097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005689362
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.191384198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006833663
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1078/0723-2020-00267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016334718
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1099/mic.0.25948-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060396570
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.59.7025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047176378
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.59.7036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033931675
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1365-2958.2004.03996.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052282475
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1128/jb.171.6.3095-3101.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062717951
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1128/jb.182.15.4348-4351.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027225569
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1128/jb.183.19.5718-5724.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020391162
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1128/jb.185.18.5627-5631.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034186083
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1128/jb.185.4.1289-1298.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017344910
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1128/jb.186.12.3970-3979.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049677585
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1128/jb.186.4.1158-1164.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037549026
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1128/jb.187.1.65-76.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041124829
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/jb.187.24.8462-8469.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009636837
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1146/annurev.micro.56.012302.160938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692430
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1146/annurev.micro.57.030502.091014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589705
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
203 schema:name Department of Chemistry and Biochemistry, University of Colorado, 80309-0215, Boulder, CO, USA
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.411377.7 schema:alternateName Indiana University Bloomington
206 schema:name Department of Biology, Indiana University Bloomington, 47405-7000, IN, USA
207 Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., 02138, Cambridge, MA, USA
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...