A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-06-14

AUTHORS

Shamira J Shallom, Jenni N Weeks, Cristi L Galindo, Lauren McIver, Zhaohui Sun, John McCormick, L Garry Adams, Harold R Garner

ABSTRACT

BACKGROUND: The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. RESULTS: A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. CONCLUSIONS: This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system. More... »

PAGES

132-132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2180-11-132

DOI

http://dx.doi.org/10.1186/1471-2180-11-132

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021143886

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21672191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brucella", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Communicable Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forensic Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microarray Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiological Techniques", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shallom", 
        "givenName": "Shamira J", 
        "id": "sg:person.01305242375.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305242375.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.240871.8", 
          "name": [
            "St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weeks", 
        "givenName": "Jenni N", 
        "id": "sg:person.0732704067.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732704067.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galindo", 
        "givenName": "Cristi L", 
        "id": "sg:person.0745375037.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745375037.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McIver", 
        "givenName": "Lauren", 
        "id": "sg:person.0735340465.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735340465.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zhaohui", 
        "id": "sg:person.01227274436.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227274436.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCormick", 
        "givenName": "John", 
        "id": "sg:person.01073721132.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073721132.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adams", 
        "givenName": "L Garry", 
        "id": "sg:person.01331536640.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331536640.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garner", 
        "givenName": "Harold R", 
        "id": "sg:person.0613230631.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2180-7-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020019666", 
          "https://doi.org/10.1186/1471-2180-7-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60327-194-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031354198", 
          "https://doi.org/10.1007/978-1-60327-194-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-6148-5-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018878316", 
          "https://doi.org/10.1186/1746-6148-5-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-9-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033054927", 
          "https://doi.org/10.1186/1471-2180-9-66"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06-14", 
    "datePublishedReg": "2011-06-14", 
    "description": "BACKGROUND: The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs.\nRESULTS: A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics.\nCONCLUSIONS: This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2180-11-132", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024253", 
        "issn": [
          "1471-2180"
        ], 
        "name": "BMC Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "phylogenomic relationships", 
      "hybridization patterns", 
      "genomic sequence information", 
      "different Brucella species", 
      "relevant host species", 
      "host species", 
      "phylogenetic classification", 
      "specific genomes", 
      "sequence information", 
      "universal microarray", 
      "unknown microorganisms", 
      "different species", 
      "genome", 
      "species", 
      "Brucella species", 
      "pathogens", 
      "pathogen samples", 
      "new pathogens", 
      "microarrays", 
      "genetic possibilities", 
      "sequence", 
      "unique pattern", 
      "specific detection system", 
      "pathogen detection", 
      "clade", 
      "cluster analysis", 
      "enormous spectrum", 
      "probe", 
      "microorganisms", 
      "rapid response", 
      "robust technology", 
      "patterns", 
      "host", 
      "pathogen detection system", 
      "variants", 
      "near-term potential", 
      "array", 
      "accidental release", 
      "identity", 
      "response", 
      "ability", 
      "release", 
      "events", 
      "development", 
      "current approaches", 
      "relationship", 
      "environment", 
      "potential", 
      "forensics", 
      "analysis", 
      "mixed pathogens", 
      "diagnostic tool", 
      "laboratory", 
      "signal intensity", 
      "tool", 
      "system", 
      "samples", 
      "intensity", 
      "possibility", 
      "utility", 
      "features", 
      "results", 
      "information", 
      "technology", 
      "bioterrorist attack", 
      "example", 
      "approach", 
      "detection", 
      "attacks", 
      "disease events", 
      "classification", 
      "relation", 
      "infected patients", 
      "field", 
      "spectra", 
      "main features", 
      "detection system", 
      "need", 
      "creation", 
      "limit", 
      "signal intensity patterns", 
      "intensity patterns", 
      "patients", 
      "security", 
      "safety", 
      "nations", 
      "research pathogen", 
      "precise pathogen", 
      "prior genomic sequence information", 
      "comprehensive sequence-independent array", 
      "sequence-independent array", 
      "un-biased cluster analysis", 
      "signal intensity hybridization patterns", 
      "intensity hybridization patterns", 
      "unique hybridization signal intensity patterns", 
      "hybridization signal intensity patterns", 
      "UBDA array", 
      "pathogen forensics", 
      "mixed pathogen sample", 
      "respective phylogenomic relationships", 
      "multiple select agent specific detection system", 
      "select agent specific detection system", 
      "agent specific detection system", 
      "species independent universal bio-detection microarray", 
      "independent universal bio-detection microarray", 
      "universal bio-detection microarray", 
      "bio-detection microarray"
    ], 
    "name": "A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms", 
    "pagination": "132-132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021143886"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2180-11-132"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21672191"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2180-11-132", 
      "https://app.dimensions.ai/details/publication/pub.1021143886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2180-11-132"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-11-132'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-11-132'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-11-132'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2180-11-132'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      22 PREDICATES      144 URIs      132 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2180-11-132 schema:about N219bd4995cc94163a92ca0a752efc73b
2 N5fbb55c6080748fea9dc2cffecf006d7
3 N7c8f5e9fcdf34a02b92100dafc6f997b
4 N977d20ee6bb14d5caf20955583b9878b
5 N9938951885bf4706aa6fe3feb89f2e55
6 Nd128da7e4206452e85e2acaa1aeb74d6
7 Ned66a2c82e4a409fba3dcf7a16e8d472
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N1c5221803b994980b666c08343ece658
11 schema:citation sg:pub.10.1007/978-1-60327-194-3_5
12 sg:pub.10.1186/1471-2180-7-34
13 sg:pub.10.1186/1471-2180-9-66
14 sg:pub.10.1186/1746-6148-5-22
15 schema:datePublished 2011-06-14
16 schema:datePublishedReg 2011-06-14
17 schema:description BACKGROUND: The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. RESULTS: A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. CONCLUSIONS: This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N0f159e2a763d4801a152e4302a634d5d
22 Na0e61bd617f247478031537ebfd3ac4c
23 sg:journal.1024253
24 schema:keywords Brucella species
25 UBDA array
26 ability
27 accidental release
28 agent specific detection system
29 analysis
30 approach
31 array
32 attacks
33 bio-detection microarray
34 bioterrorist attack
35 clade
36 classification
37 cluster analysis
38 comprehensive sequence-independent array
39 creation
40 current approaches
41 detection
42 detection system
43 development
44 diagnostic tool
45 different Brucella species
46 different species
47 disease events
48 enormous spectrum
49 environment
50 events
51 example
52 features
53 field
54 forensics
55 genetic possibilities
56 genome
57 genomic sequence information
58 host
59 host species
60 hybridization patterns
61 hybridization signal intensity patterns
62 identity
63 independent universal bio-detection microarray
64 infected patients
65 information
66 intensity
67 intensity hybridization patterns
68 intensity patterns
69 laboratory
70 limit
71 main features
72 microarrays
73 microorganisms
74 mixed pathogen sample
75 mixed pathogens
76 multiple select agent specific detection system
77 nations
78 near-term potential
79 need
80 new pathogens
81 pathogen detection
82 pathogen detection system
83 pathogen forensics
84 pathogen samples
85 pathogens
86 patients
87 patterns
88 phylogenetic classification
89 phylogenomic relationships
90 possibility
91 potential
92 precise pathogen
93 prior genomic sequence information
94 probe
95 rapid response
96 relation
97 relationship
98 release
99 relevant host species
100 research pathogen
101 respective phylogenomic relationships
102 response
103 results
104 robust technology
105 safety
106 samples
107 security
108 select agent specific detection system
109 sequence
110 sequence information
111 sequence-independent array
112 signal intensity
113 signal intensity hybridization patterns
114 signal intensity patterns
115 species
116 species independent universal bio-detection microarray
117 specific detection system
118 specific genomes
119 spectra
120 system
121 technology
122 tool
123 un-biased cluster analysis
124 unique hybridization signal intensity patterns
125 unique pattern
126 universal bio-detection microarray
127 universal microarray
128 unknown microorganisms
129 utility
130 variants
131 schema:name A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms
132 schema:pagination 132-132
133 schema:productId Nbad72cc63c854aa2852c33dfa963856a
134 Ndc3a97511ca54d44b002f31b2acc047a
135 Ne5dc913f241140a9b373f789f3c00822
136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021143886
137 https://doi.org/10.1186/1471-2180-11-132
138 schema:sdDatePublished 2022-01-01T18:26
139 schema:sdLicense https://scigraph.springernature.com/explorer/license/
140 schema:sdPublisher Nf919659e85064a5893abdd53d69c033a
141 schema:url https://doi.org/10.1186/1471-2180-11-132
142 sgo:license sg:explorer/license/
143 sgo:sdDataset articles
144 rdf:type schema:ScholarlyArticle
145 N0f159e2a763d4801a152e4302a634d5d schema:issueNumber 1
146 rdf:type schema:PublicationIssue
147 N1c5221803b994980b666c08343ece658 rdf:first sg:person.01305242375.40
148 rdf:rest Nde0e82cb88b14a5d9cd189ff5046e323
149 N219bd4995cc94163a92ca0a752efc73b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Brucella
151 rdf:type schema:DefinedTerm
152 N2e0bd583ef774de78af4ca9aed4260c3 rdf:first sg:person.01073721132.84
153 rdf:rest Na0e454d18f4d4335821fe70dda8cac84
154 N52e48f0915384a8291d55df3ab27a842 rdf:first sg:person.0613230631.83
155 rdf:rest rdf:nil
156 N5fbb55c6080748fea9dc2cffecf006d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Animals
158 rdf:type schema:DefinedTerm
159 N7c8f5e9fcdf34a02b92100dafc6f997b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 N977d20ee6bb14d5caf20955583b9878b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Communicable Diseases
164 rdf:type schema:DefinedTerm
165 N9938951885bf4706aa6fe3feb89f2e55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Microarray Analysis
167 rdf:type schema:DefinedTerm
168 Na0e454d18f4d4335821fe70dda8cac84 rdf:first sg:person.01331536640.85
169 rdf:rest N52e48f0915384a8291d55df3ab27a842
170 Na0e61bd617f247478031537ebfd3ac4c schema:volumeNumber 11
171 rdf:type schema:PublicationVolume
172 Naedf30f9bb514bb4b006cbd6aebba6b2 rdf:first sg:person.0735340465.29
173 rdf:rest Nea821ed986704f3ea570d9eefc047dbd
174 Nbad72cc63c854aa2852c33dfa963856a schema:name doi
175 schema:value 10.1186/1471-2180-11-132
176 rdf:type schema:PropertyValue
177 Nd128da7e4206452e85e2acaa1aeb74d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Microbiological Techniques
179 rdf:type schema:DefinedTerm
180 Ndc3a97511ca54d44b002f31b2acc047a schema:name pubmed_id
181 schema:value 21672191
182 rdf:type schema:PropertyValue
183 Nde0e82cb88b14a5d9cd189ff5046e323 rdf:first sg:person.0732704067.38
184 rdf:rest Nf9aa497d77b74efab5a803b07c5afd15
185 Ne5dc913f241140a9b373f789f3c00822 schema:name dimensions_id
186 schema:value pub.1021143886
187 rdf:type schema:PropertyValue
188 Nea821ed986704f3ea570d9eefc047dbd rdf:first sg:person.01227274436.91
189 rdf:rest N2e0bd583ef774de78af4ca9aed4260c3
190 Ned66a2c82e4a409fba3dcf7a16e8d472 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Forensic Medicine
192 rdf:type schema:DefinedTerm
193 Nf919659e85064a5893abdd53d69c033a schema:name Springer Nature - SN SciGraph project
194 rdf:type schema:Organization
195 Nf9aa497d77b74efab5a803b07c5afd15 rdf:first sg:person.0745375037.37
196 rdf:rest Naedf30f9bb514bb4b006cbd6aebba6b2
197 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
198 schema:name Biological Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
201 schema:name Genetics
202 rdf:type schema:DefinedTerm
203 sg:journal.1024253 schema:issn 1471-2180
204 schema:name BMC Microbiology
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.01073721132.84 schema:affiliation grid-institutes:grid.438526.e
208 schema:familyName McCormick
209 schema:givenName John
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073721132.84
211 rdf:type schema:Person
212 sg:person.01227274436.91 schema:affiliation grid-institutes:grid.438526.e
213 schema:familyName Sun
214 schema:givenName Zhaohui
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227274436.91
216 rdf:type schema:Person
217 sg:person.01305242375.40 schema:affiliation grid-institutes:grid.438526.e
218 schema:familyName Shallom
219 schema:givenName Shamira J
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305242375.40
221 rdf:type schema:Person
222 sg:person.01331536640.85 schema:affiliation grid-institutes:grid.264756.4
223 schema:familyName Adams
224 schema:givenName L Garry
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331536640.85
226 rdf:type schema:Person
227 sg:person.0613230631.83 schema:affiliation grid-institutes:grid.438526.e
228 schema:familyName Garner
229 schema:givenName Harold R
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83
231 rdf:type schema:Person
232 sg:person.0732704067.38 schema:affiliation grid-institutes:grid.240871.8
233 schema:familyName Weeks
234 schema:givenName Jenni N
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732704067.38
236 rdf:type schema:Person
237 sg:person.0735340465.29 schema:affiliation grid-institutes:grid.438526.e
238 schema:familyName McIver
239 schema:givenName Lauren
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735340465.29
241 rdf:type schema:Person
242 sg:person.0745375037.37 schema:affiliation grid-institutes:grid.438526.e
243 schema:familyName Galindo
244 schema:givenName Cristi L
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745375037.37
246 rdf:type schema:Person
247 sg:pub.10.1007/978-1-60327-194-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031354198
248 https://doi.org/10.1007/978-1-60327-194-3_5
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2180-7-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020019666
251 https://doi.org/10.1186/1471-2180-7-34
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2180-9-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033054927
254 https://doi.org/10.1186/1471-2180-9-66
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1746-6148-5-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018878316
257 https://doi.org/10.1186/1746-6148-5-22
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.240871.8 schema:alternateName St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
260 schema:name St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
261 rdf:type schema:Organization
262 grid-institutes:grid.264756.4 schema:alternateName Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, USA
263 schema:name Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, USA
264 rdf:type schema:Organization
265 grid-institutes:grid.438526.e schema:alternateName Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
266 schema:name Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...