Annotation of mammalian primary microRNAs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Harpreet K Saini, Anton J Enright, Sam Griffiths-Jones

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA) is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA). The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. RESULTS: We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. CONCLUSION: Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of human, mouse and rat pri-miRNAs. We confidently predict the transcripts including a total of 77, 58 and 47 human, mouse and rat pre-miRNAs respectively. Our computational annotations provide a basis for subsequent experimental validation of predicted pri-miRNAs. More... »

PAGES

564

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-9-564

DOI

http://dx.doi.org/10.1186/1471-2164-9-564

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031470770

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19038026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CpG Islands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Introns", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saini", 
        "givenName": "Harpreet K", 
        "id": "sg:person.01030154770.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030154770.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton Cambridge, UK", 
            "EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enright", 
        "givenName": "Anton J", 
        "id": "sg:person.0765550040.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765550040.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griffiths-Jones", 
        "givenName": "Sam", 
        "id": "sg:person.01360620356.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360620356.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001417778", 
          "https://doi.org/10.1038/ng1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001417778", 
          "https://doi.org/10.1038/ng1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003575931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003664208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(01)00612-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003684057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1122689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004440782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.03.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004599936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005126670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005350024", 
          "https://doi.org/10.1038/ng865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005350024", 
          "https://doi.org/10.1038/ng865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2004.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006172447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007709989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929702", 
          "https://doi.org/10.1038/nature01957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929702", 
          "https://doi.org/10.1038/nature01957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0703890104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008310477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2780503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010428347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4074106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014714441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m504714200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014905295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018871939", 
          "https://doi.org/10.1038/nsmb1167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018871939", 
          "https://doi.org/10.1038/nsmb1167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1025202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019149124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2005.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019801368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-7-403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019975978", 
          "https://doi.org/10.1186/gb-2003-4-7-403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020178588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-5822.2007.01050.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020986640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.02073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021158939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471250953.bi0104s17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023830770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.7135204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023833580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024146930", 
          "https://doi.org/10.1186/1471-2105-8-333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2722704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024280946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024704926", 
          "https://doi.org/10.1038/nature05983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025066656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2136655100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028529038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2005.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028671211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)00045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031254572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(02)00908-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032329761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0800121105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034225351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034662471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7600385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035197644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840562", 
          "https://doi.org/10.1038/nrm1644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840562", 
          "https://doi.org/10.1038/nrm1644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038506370", 
          "https://doi.org/10.1038/nmeth733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038506370", 
          "https://doi.org/10.1038/nmeth733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-514-5_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040069370", 
          "https://doi.org/10.1007/978-1-59745-514-5_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041785062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1262504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042334541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042443480", 
          "https://doi.org/10.1038/nature03877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042443480", 
          "https://doi.org/10.1038/nature03877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042443480", 
          "https://doi.org/10.1038/nature03877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043892064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044012298", 
          "https://doi.org/10.1038/nrc1997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044012298", 
          "https://doi.org/10.1038/nrc1997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.7122604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045379644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-006-0007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047214124", 
          "https://doi.org/10.1007/s00335-006-0007-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-006-0007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047214124", 
          "https://doi.org/10.1007/s00335-006-0007-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.7240905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048479743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307323101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049808985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1062961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049854130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3158304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051771312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35005107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053082190", 
          "https://doi.org/10.1038/35005107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35005107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053082190", 
          "https://doi.org/10.1038/35005107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077293553", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077628084", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA) is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA). The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions.\nRESULTS: We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences.\nCONCLUSION: Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of human, mouse and rat pri-miRNAs. We confidently predict the transcripts including a total of 77, 58 and 47 human, mouse and rat pre-miRNAs respectively. Our computational annotations provide a basis for subsequent experimental validation of predicted pri-miRNAs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-9-564", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Annotation of mammalian primary microRNAs", 
    "pagination": "564", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "95eb75015142845cdf3c9686e7ad99fc0c8695aafdeaa4b3cba9f99247c93599"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19038026"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-9-564"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031470770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-9-564", 
      "https://app.dimensions.ai/details/publication/pub.1031470770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-9-564"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-564'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-564'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-564'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-564'


 

This table displays all metadata directly associated to this object as RDF triples.

309 TRIPLES      21 PREDICATES      94 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-9-564 schema:about N07a29b0afc3d4005a27d74d53096314c
2 N31bf5cfab4af4ad5aac90274c9c92477
3 N36e671a3ae814fcc99343016790e2621
4 N52495240ba394a69a2a1325fe6d4b1a9
5 N5878ac27b63b48a2871d516dcaae6165
6 N678d87ac3a0f4732938f6d56e32d4e69
7 N76258a2d08e440a9b73f046f734c5e2b
8 N7e37cc6beab246a689bf839a95a6a2f7
9 N8f7d4a88bac94469992567fab69e94fe
10 Na70058d2804742699a625b83ef804575
11 Nda4b92ecf58846c4819c9a786440e665
12 Nebdd86960cae41d7a018e40b52e1ce1b
13 Nfcf959f4b90049c4bfb478b721401823
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N65aa77770b1a46509e75f8c8047aa657
17 schema:citation sg:pub.10.1007/978-1-59745-514-5_33
18 sg:pub.10.1007/s00335-006-0007-9
19 sg:pub.10.1038/35005107
20 sg:pub.10.1038/nature01957
21 sg:pub.10.1038/nature03877
22 sg:pub.10.1038/nature05983
23 sg:pub.10.1038/ng1789
24 sg:pub.10.1038/ng865
25 sg:pub.10.1038/nmeth733
26 sg:pub.10.1038/nrc1997
27 sg:pub.10.1038/nrm1644
28 sg:pub.10.1038/nsmb1167
29 sg:pub.10.1186/1471-2105-8-333
30 sg:pub.10.1186/gb-2003-4-7-403
31 https://app.dimensions.ai/details/publication/pub.1077293553
32 https://app.dimensions.ai/details/publication/pub.1077628084
33 https://doi.org/10.1002/0471250953.bi0104s17
34 https://doi.org/10.1016/j.cell.2005.07.031
35 https://doi.org/10.1016/j.cell.2006.03.043
36 https://doi.org/10.1016/j.cell.2006.12.048
37 https://doi.org/10.1016/j.cell.2007.04.008
38 https://doi.org/10.1016/j.gde.2005.01.002
39 https://doi.org/10.1016/j.gde.2005.08.005
40 https://doi.org/10.1016/j.molcel.2004.12.002
41 https://doi.org/10.1016/s0092-8674(02)00908-x
42 https://doi.org/10.1016/s0092-8674(04)00045-5
43 https://doi.org/10.1016/s0378-1119(01)00612-6
44 https://doi.org/10.1038/sj.emboj.7600385
45 https://doi.org/10.1073/pnas.0307323101
46 https://doi.org/10.1073/pnas.0703890104
47 https://doi.org/10.1073/pnas.0800121105
48 https://doi.org/10.1073/pnas.2136655100
49 https://doi.org/10.1074/jbc.m504714200
50 https://doi.org/10.1093/nar/gki567
51 https://doi.org/10.1093/nar/gkm952
52 https://doi.org/10.1093/nar/gkm987
53 https://doi.org/10.1093/nar/gkm988
54 https://doi.org/10.1101/gad.1025202
55 https://doi.org/10.1101/gad.1262504
56 https://doi.org/10.1101/gr.2722704
57 https://doi.org/10.1101/gr.3158304
58 https://doi.org/10.1101/gr.4074106
59 https://doi.org/10.1111/j.1462-5822.2007.01050.x
60 https://doi.org/10.1126/science.1062961
61 https://doi.org/10.1126/science.1090599
62 https://doi.org/10.1126/science.1122689
63 https://doi.org/10.1242/dev.02073
64 https://doi.org/10.1261/rna.2780503
65 https://doi.org/10.1261/rna.7122604
66 https://doi.org/10.1261/rna.7135204
67 https://doi.org/10.1261/rna.7240905
68 https://doi.org/10.1371/journal.pcbi.0030037
69 schema:datePublished 2008-12
70 schema:datePublishedReg 2008-12-01
71 schema:description BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA) is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA). The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. RESULTS: We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. CONCLUSION: Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of human, mouse and rat pri-miRNAs. We confidently predict the transcripts including a total of 77, 58 and 47 human, mouse and rat pre-miRNAs respectively. Our computational annotations provide a basis for subsequent experimental validation of predicted pri-miRNAs.
72 schema:genre research_article
73 schema:inLanguage en
74 schema:isAccessibleForFree true
75 schema:isPartOf N95ea32e0879f47fa9ef0a3a1f12ea40d
76 Na03c03101c8c4643a795dae42f1ae60a
77 sg:journal.1023790
78 schema:name Annotation of mammalian primary microRNAs
79 schema:pagination 564
80 schema:productId N5b688796b8034e07bd5c0d809a02e8a3
81 N8458c9d2b9d642d88f146aca6509ee3f
82 Na4cb43f5f0254edd89056e0eeaf64ca3
83 Nca357aefdfb2451b9cb4a6dcc4328ffc
84 Nf540969496b9443595fa01b1291d9da5
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031470770
86 https://doi.org/10.1186/1471-2164-9-564
87 schema:sdDatePublished 2019-04-10T19:07
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N57e4f22e2c174eb588438048ab5c95c9
90 schema:url http://link.springer.com/10.1186%2F1471-2164-9-564
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N07a29b0afc3d4005a27d74d53096314c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name MicroRNAs
96 rdf:type schema:DefinedTerm
97 N31bf5cfab4af4ad5aac90274c9c92477 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name CpG Islands
99 rdf:type schema:DefinedTerm
100 N36e671a3ae814fcc99343016790e2621 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Mice
102 rdf:type schema:DefinedTerm
103 N52495240ba394a69a2a1325fe6d4b1a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Databases, Genetic
105 rdf:type schema:DefinedTerm
106 N57e4f22e2c174eb588438048ab5c95c9 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N5878ac27b63b48a2871d516dcaae6165 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Humans
110 rdf:type schema:DefinedTerm
111 N5b688796b8034e07bd5c0d809a02e8a3 schema:name doi
112 schema:value 10.1186/1471-2164-9-564
113 rdf:type schema:PropertyValue
114 N65aa77770b1a46509e75f8c8047aa657 rdf:first sg:person.01030154770.69
115 rdf:rest N888b37dae4ed40f4a0ca3b82851f8069
116 N678d87ac3a0f4732938f6d56e32d4e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Introns
118 rdf:type schema:DefinedTerm
119 N76258a2d08e440a9b73f046f734c5e2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Conserved Sequence
121 rdf:type schema:DefinedTerm
122 N7e37cc6beab246a689bf839a95a6a2f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Animals
124 rdf:type schema:DefinedTerm
125 N8458c9d2b9d642d88f146aca6509ee3f schema:name dimensions_id
126 schema:value pub.1031470770
127 rdf:type schema:PropertyValue
128 N888b37dae4ed40f4a0ca3b82851f8069 rdf:first sg:person.0765550040.56
129 rdf:rest N8cdc0ef78a974ae99603bb931d53a615
130 N8cdc0ef78a974ae99603bb931d53a615 rdf:first sg:person.01360620356.57
131 rdf:rest rdf:nil
132 N8f7d4a88bac94469992567fab69e94fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Models, Genetic
134 rdf:type schema:DefinedTerm
135 N95ea32e0879f47fa9ef0a3a1f12ea40d schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 Na03c03101c8c4643a795dae42f1ae60a schema:volumeNumber 9
138 rdf:type schema:PublicationVolume
139 Na4cb43f5f0254edd89056e0eeaf64ca3 schema:name nlm_unique_id
140 schema:value 100965258
141 rdf:type schema:PropertyValue
142 Na70058d2804742699a625b83ef804575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Genome
144 rdf:type schema:DefinedTerm
145 Nca357aefdfb2451b9cb4a6dcc4328ffc schema:name pubmed_id
146 schema:value 19038026
147 rdf:type schema:PropertyValue
148 Nda4b92ecf58846c4819c9a786440e665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Transcription, Genetic
150 rdf:type schema:DefinedTerm
151 Nebdd86960cae41d7a018e40b52e1ce1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Rats
153 rdf:type schema:DefinedTerm
154 Nf540969496b9443595fa01b1291d9da5 schema:name readcube_id
155 schema:value 95eb75015142845cdf3c9686e7ad99fc0c8695aafdeaa4b3cba9f99247c93599
156 rdf:type schema:PropertyValue
157 Nfcf959f4b90049c4bfb478b721401823 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Expressed Sequence Tags
159 rdf:type schema:DefinedTerm
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:journal.1023790 schema:issn 1471-2164
167 schema:name BMC Genomics
168 rdf:type schema:Periodical
169 sg:person.01030154770.69 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
170 schema:familyName Saini
171 schema:givenName Harpreet K
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030154770.69
173 rdf:type schema:Person
174 sg:person.01360620356.57 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
175 schema:familyName Griffiths-Jones
176 schema:givenName Sam
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360620356.57
178 rdf:type schema:Person
179 sg:person.0765550040.56 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
180 schema:familyName Enright
181 schema:givenName Anton J
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765550040.56
183 rdf:type schema:Person
184 sg:pub.10.1007/978-1-59745-514-5_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040069370
185 https://doi.org/10.1007/978-1-59745-514-5_33
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00335-006-0007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047214124
188 https://doi.org/10.1007/s00335-006-0007-9
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/35005107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053082190
191 https://doi.org/10.1038/35005107
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature01957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007929702
194 https://doi.org/10.1038/nature01957
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature03877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042443480
197 https://doi.org/10.1038/nature03877
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature05983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024704926
200 https://doi.org/10.1038/nature05983
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ng1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001417778
203 https://doi.org/10.1038/ng1789
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ng865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005350024
206 https://doi.org/10.1038/ng865
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nmeth733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038506370
209 https://doi.org/10.1038/nmeth733
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nrc1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044012298
212 https://doi.org/10.1038/nrc1997
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nrm1644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035840562
215 https://doi.org/10.1038/nrm1644
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nsmb1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018871939
218 https://doi.org/10.1038/nsmb1167
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/1471-2105-8-333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024146930
221 https://doi.org/10.1186/1471-2105-8-333
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/gb-2003-4-7-403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019975978
224 https://doi.org/10.1186/gb-2003-4-7-403
225 rdf:type schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1077293553 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1077628084 schema:CreativeWork
228 https://doi.org/10.1002/0471250953.bi0104s17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023830770
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.cell.2005.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003664208
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.cell.2006.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004599936
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.cell.2006.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005126670
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.cell.2007.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007709989
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.gde.2005.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019801368
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.gde.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028671211
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.molcel.2004.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006172447
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s0092-8674(02)00908-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032329761
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s0092-8674(04)00045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031254572
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s0378-1119(01)00612-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003684057
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1038/sj.emboj.7600385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035197644
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.0307323101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049808985
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.0703890104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008310477
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.0800121105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034225351
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.2136655100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028529038
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1074/jbc.m504714200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014905295
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/nar/gki567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025066656
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/nar/gkm952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020178588
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/nar/gkm987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034662471
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/gkm988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041785062
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1101/gad.1025202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019149124
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1101/gad.1262504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042334541
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1101/gr.2722704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024280946
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1101/gr.3158304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051771312
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1101/gr.4074106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014714441
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/j.1462-5822.2007.01050.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020986640
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.1062961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049854130
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1126/science.1090599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003575931
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1126/science.1122689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004440782
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1242/dev.02073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021158939
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1261/rna.2780503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010428347
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1261/rna.7122604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045379644
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1261/rna.7135204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023833580
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1261/rna.7240905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048479743
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pcbi.0030037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043892064
299 rdf:type schema:CreativeWork
300 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
301 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton Cambridge, UK
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
304 schema:name EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK
305 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton Cambridge, UK
306 rdf:type schema:Organization
307 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
308 schema:name Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT, Manchester, UK
309 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...