Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Martin H van Vliet, Fabien Reyal, Hugo M Horlings, Marc J van de Vijver, Marcel JT Reinders, Lodewyk FA Wessels

ABSTRACT

BACKGROUND: Michiels et al. (Lancet 2005; 365: 488-92) employed a resampling strategy to show that the genes identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The genes most frequently identified in the separate resamplings were put forward as a 'gold standard'. On a higher level, breast cancer datasets collected by different institutions can be considered as resamplings from the underlying breast cancer population. The limited overlap between published prognostic signatures confirms the trend of signature instability identified by the resampling strategy. Six breast cancer datasets, totaling 947 samples, all measured on the Affymetrix platform, are currently available. This provides a unique opportunity to employ a substantial dataset to investigate the effects of pooling datasets on classifier accuracy, signature stability and enrichment of functional categories. RESULTS: We show that the resampling strategy produces a suboptimal ranking of genes, which can not be considered to be a 'gold standard'. When pooling breast cancer datasets, we observed a synergetic effect on the classification performance in 73% of the cases. We also observe a significant positive correlation between the number of datasets that is pooled, the validation performance, the number of genes selected, and the enrichment of specific functional categories. In addition, we have evaluated the support for five explanations that have been postulated for the limited overlap of signatures. CONCLUSION: The limited overlap of current signature genes can be attributed to small sample size. Pooling datasets results in more accurate classification and a convergence of signature genes. We therefore advocate the analysis of new data within the context of a compendium, rather than analysis in isolation. More... »

PAGES

375

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-9-375

DOI

http://dx.doi.org/10.1186/1471-2164-9-375

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051350612

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18684329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meta-Analysis as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Random Allocation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sample Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software Validation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Antoni van Leeuwenhoek Hospital", 
          "id": "https://www.grid.ac/institutes/grid.430814.a", 
          "name": [
            "Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands", 
            "Bioinformatics and Statistics group, Department of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Vliet", 
        "givenName": "Martin H", 
        "id": "sg:person.013733154414.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733154414.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands", 
            "Department of Surgery, Institut Curie, 6 rue d'Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reyal", 
        "givenName": "Fabien", 
        "id": "sg:person.01104374270.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104374270.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Antoni van Leeuwenhoek Hospital", 
          "id": "https://www.grid.ac/institutes/grid.430814.a", 
          "name": [
            "Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horlings", 
        "givenName": "Hugo M", 
        "id": "sg:person.01154231750.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154231750.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academic Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5650.6", 
          "name": [
            "Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands", 
            "Department of Pathology, Academic Medical Center, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van de Vijver", 
        "givenName": "Marc J", 
        "id": "sg:person.01367247364.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367247364.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reinders", 
        "givenName": "Marcel JT", 
        "id": "sg:person.01301511174.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301511174.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Antoni van Leeuwenhoek Hospital", 
          "id": "https://www.grid.ac/institutes/grid.430814.a", 
          "name": [
            "Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands", 
            "Bioinformatics and Statistics group, Department of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessels", 
        "givenName": "Lodewyk FA", 
        "id": "sg:person.013377553177.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377553177.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/gcc.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506230102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002515049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.07.1522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003206258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005590191", 
          "https://doi.org/10.1186/1471-2105-9-125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005590191", 
          "https://doi.org/10.1186/1471-2105-9-125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006375768", 
          "https://doi.org/10.1186/bcr1771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.21954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006417211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.21954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006417211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-3960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006872615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007001835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007001835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008016941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9293-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008554332", 
          "https://doi.org/10.1007/s10549-006-9293-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9293-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008554332", 
          "https://doi.org/10.1007/s10549-006-9293-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009683731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-0881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009880031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4651-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010831601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-0285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011162518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-06-1503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014854225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-1328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014856413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmed/95.4.247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016032898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017381711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018638362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024889327", 
          "https://doi.org/10.1007/0-387-29362-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024977029", 
          "https://doi.org/10.1038/sj.onc.1209920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024977029", 
          "https://doi.org/10.1038/sj.onc.1209920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993077", 
          "https://doi.org/10.1038/ng1434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993077", 
          "https://doi.org/10.1038/ng1434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2007.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025460952", 
          "https://doi.org/10.1038/ng.2007.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026575398", 
          "https://doi.org/10.1186/bcr1650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(07)70042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027417986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027421084", 
          "https://doi.org/10.1186/bcr1798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027421084", 
          "https://doi.org/10.1186/bcr1798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.022518699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028458828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030207920", 
          "https://doi.org/10.1038/nature03799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030207920", 
          "https://doi.org/10.1038/nature03799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030207920", 
          "https://doi.org/10.1038/nature03799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030207920", 
          "https://doi.org/10.1038/nature03799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-06-2765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030779547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033076641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033652981", 
          "https://doi.org/10.1186/1471-2105-8-275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.102102699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034359388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034411467", 
          "https://doi.org/10.1038/nrc2173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-06-1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035054052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2005.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035831724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036376828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-2715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037311992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-007-9673-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037984934", 
          "https://doi.org/10.1007/s10549-007-9673-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-007-9673-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037984934", 
          "https://doi.org/10.1007/s10549-007-9673-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082099299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa021967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038600096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-7-182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043389517", 
          "https://doi.org/10.1186/1471-2407-7-182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2007.02792.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043982169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-0393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047788005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-10-r101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049083057", 
          "https://doi.org/10.1186/gb-2006-7-10-r101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052735338", 
          "https://doi.org/10.1186/gb-2007-8-8-r157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2007.00635.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053286165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076997356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.177.11.7599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077325974"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: Michiels et al. (Lancet 2005; 365: 488-92) employed a resampling strategy to show that the genes identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The genes most frequently identified in the separate resamplings were put forward as a 'gold standard'. On a higher level, breast cancer datasets collected by different institutions can be considered as resamplings from the underlying breast cancer population. The limited overlap between published prognostic signatures confirms the trend of signature instability identified by the resampling strategy. Six breast cancer datasets, totaling 947 samples, all measured on the Affymetrix platform, are currently available. This provides a unique opportunity to employ a substantial dataset to investigate the effects of pooling datasets on classifier accuracy, signature stability and enrichment of functional categories.\nRESULTS: We show that the resampling strategy produces a suboptimal ranking of genes, which can not be considered to be a 'gold standard'. When pooling breast cancer datasets, we observed a synergetic effect on the classification performance in 73% of the cases. We also observe a significant positive correlation between the number of datasets that is pooled, the validation performance, the number of genes selected, and the enrichment of specific functional categories. In addition, we have evaluated the support for five explanations that have been postulated for the limited overlap of signatures.\nCONCLUSION: The limited overlap of current signature genes can be attributed to small sample size. Pooling datasets results in more accurate classification and a convergence of signature genes. We therefore advocate the analysis of new data within the context of a compendium, rather than analysis in isolation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-9-375", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability", 
    "pagination": "375", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f49c9676544bdac0fe0b989a69d7c4742d795b50fc12e47b0cca341acc08fbdd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18684329"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-9-375"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051350612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-9-375", 
      "https://app.dimensions.ai/details/publication/pub.1051350612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-9-375"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-375'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-375'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-375'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-375'


 

This table displays all metadata directly associated to this object as RDF triples.

329 TRIPLES      21 PREDICATES      91 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-9-375 schema:about N0ae6ed1c38f1453084d1063181c05eb8
2 N3b861cd7611c47a9ab9fafe19bdf90c2
3 N3c5517fffa1942adac100874ea52115b
4 N41998947ea204b1382ff104ecdcae1d7
5 N55d0640e2b924c75929fb226349be464
6 N88f1f67a646048bdb10c2e1d7e765f3b
7 Na20ebae907f44285b8ed1bbe1910bc49
8 Nbd6ff26d8eb849368088a639d03478d2
9 Ncc2cdd875ffe4b64bca4dc87d6d4e04f
10 Nda8df281bfbf4d0fae45e6898ff97a0d
11 anzsrc-for:11
12 anzsrc-for:1112
13 schema:author N22d96e68cb374546ac058b9663979cb2
14 schema:citation sg:pub.10.1007/0-387-29362-0_3
15 sg:pub.10.1007/s10549-006-9293-x
16 sg:pub.10.1007/s10549-007-9673-x
17 sg:pub.10.1038/415530a
18 sg:pub.10.1038/nature03799
19 sg:pub.10.1038/ng.2007.2
20 sg:pub.10.1038/ng1434
21 sg:pub.10.1038/nrc2173
22 sg:pub.10.1038/sj.onc.1209920
23 sg:pub.10.1186/1471-2105-8-275
24 sg:pub.10.1186/1471-2105-9-125
25 sg:pub.10.1186/1471-2407-7-182
26 sg:pub.10.1186/bcr1325
27 sg:pub.10.1186/bcr1650
28 sg:pub.10.1186/bcr1771
29 sg:pub.10.1186/bcr1798
30 sg:pub.10.1186/gb-2006-7-10-r101
31 sg:pub.10.1186/gb-2007-8-8-r157
32 https://app.dimensions.ai/details/publication/pub.1076997356
33 https://doi.org/10.1002/gcc.20418
34 https://doi.org/10.1002/ijc.21954
35 https://doi.org/10.1016/j.ccr.2006.10.009
36 https://doi.org/10.1016/j.ydbio.2005.01.029
37 https://doi.org/10.1016/s0140-6736(05)17866-0
38 https://doi.org/10.1016/s0140-6736(05)17947-1
39 https://doi.org/10.1016/s1470-2045(07)70042-6
40 https://doi.org/10.1038/msb4100180
41 https://doi.org/10.1056/nejmoa021967
42 https://doi.org/10.1073/pnas.022518699
43 https://doi.org/10.1073/pnas.0506230102
44 https://doi.org/10.1073/pnas.082099299
45 https://doi.org/10.1073/pnas.102102699
46 https://doi.org/10.1093/bioinformatics/bth469
47 https://doi.org/10.1093/bioinformatics/bti429
48 https://doi.org/10.1093/bioinformatics/bti647
49 https://doi.org/10.1093/nar/gng015
50 https://doi.org/10.1093/qjmed/95.4.247
51 https://doi.org/10.1111/j.1349-7006.2007.00635.x
52 https://doi.org/10.1111/j.1365-2559.2007.02792.x
53 https://doi.org/10.1158/0008-5472.can-05-3960
54 https://doi.org/10.1158/0008-5472.can-07-0881
55 https://doi.org/10.1158/1078-0432.ccr-05-0285
56 https://doi.org/10.1158/1078-0432.ccr-05-2715
57 https://doi.org/10.1158/1078-0432.ccr-06-1503
58 https://doi.org/10.1158/1078-0432.ccr-06-1560
59 https://doi.org/10.1158/1078-0432.ccr-06-2765
60 https://doi.org/10.1158/1078-0432.ccr-07-0393
61 https://doi.org/10.1158/1078-0432.ccr-07-1328
62 https://doi.org/10.1200/jco.2006.07.1522
63 https://doi.org/10.1371/journal.pgen.0030161
64 https://doi.org/10.1523/jneurosci.4651-07.2008
65 https://doi.org/10.4049/jimmunol.177.11.7599
66 schema:datePublished 2008-12
67 schema:datePublishedReg 2008-12-01
68 schema:description BACKGROUND: Michiels et al. (Lancet 2005; 365: 488-92) employed a resampling strategy to show that the genes identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The genes most frequently identified in the separate resamplings were put forward as a 'gold standard'. On a higher level, breast cancer datasets collected by different institutions can be considered as resamplings from the underlying breast cancer population. The limited overlap between published prognostic signatures confirms the trend of signature instability identified by the resampling strategy. Six breast cancer datasets, totaling 947 samples, all measured on the Affymetrix platform, are currently available. This provides a unique opportunity to employ a substantial dataset to investigate the effects of pooling datasets on classifier accuracy, signature stability and enrichment of functional categories. RESULTS: We show that the resampling strategy produces a suboptimal ranking of genes, which can not be considered to be a 'gold standard'. When pooling breast cancer datasets, we observed a synergetic effect on the classification performance in 73% of the cases. We also observe a significant positive correlation between the number of datasets that is pooled, the validation performance, the number of genes selected, and the enrichment of specific functional categories. In addition, we have evaluated the support for five explanations that have been postulated for the limited overlap of signatures. CONCLUSION: The limited overlap of current signature genes can be attributed to small sample size. Pooling datasets results in more accurate classification and a convergence of signature genes. We therefore advocate the analysis of new data within the context of a compendium, rather than analysis in isolation.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree true
72 schema:isPartOf Nb4791d3e30384c7e97e089e6f3e19247
73 Nbb5bd10f3b174dbbbd265f7fca15e95f
74 sg:journal.1023790
75 schema:name Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability
76 schema:pagination 375
77 schema:productId N0fc87b65dd4843dea298bfa07d2adbd6
78 N26c8df4cded7445883981874494a5fef
79 N6f96c43f48084cd09ad3ae4b625ca9a9
80 N7799dc1fe8324b2d80fcfdf85a3bd749
81 Ne1ecc16069014e1ab913d275f6ca685b
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051350612
83 https://doi.org/10.1186/1471-2164-9-375
84 schema:sdDatePublished 2019-04-10T15:00
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N60ca01772d604c2fada1b02e8f12c62c
87 schema:url http://link.springer.com/10.1186%2F1471-2164-9-375
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0356dc651c344b9bae7032db9ff33eae rdf:first sg:person.013377553177.45
92 rdf:rest rdf:nil
93 N0ae6ed1c38f1453084d1063181c05eb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Computational Biology
95 rdf:type schema:DefinedTerm
96 N0fc87b65dd4843dea298bfa07d2adbd6 schema:name doi
97 schema:value 10.1186/1471-2164-9-375
98 rdf:type schema:PropertyValue
99 N22d96e68cb374546ac058b9663979cb2 rdf:first sg:person.013733154414.46
100 rdf:rest Nb36b652cdc344a0d880f1b289f929637
101 N26c8df4cded7445883981874494a5fef schema:name readcube_id
102 schema:value f49c9676544bdac0fe0b989a69d7c4742d795b50fc12e47b0cca341acc08fbdd
103 rdf:type schema:PropertyValue
104 N3b861cd7611c47a9ab9fafe19bdf90c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N3c5517fffa1942adac100874ea52115b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Sample Size
109 rdf:type schema:DefinedTerm
110 N41998947ea204b1382ff104ecdcae1d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Selection Bias
112 rdf:type schema:DefinedTerm
113 N45948ce9500d4c9fb7bb52dc3a6b2bfc rdf:first sg:person.01367247364.80
114 rdf:rest N67817152baa241bd8b9ec4541eb9262d
115 N55d0640e2b924c75929fb226349be464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Software Validation
117 rdf:type schema:DefinedTerm
118 N60ca01772d604c2fada1b02e8f12c62c schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N67817152baa241bd8b9ec4541eb9262d rdf:first sg:person.01301511174.43
121 rdf:rest N0356dc651c344b9bae7032db9ff33eae
122 N6f96c43f48084cd09ad3ae4b625ca9a9 schema:name nlm_unique_id
123 schema:value 100965258
124 rdf:type schema:PropertyValue
125 N7799dc1fe8324b2d80fcfdf85a3bd749 schema:name pubmed_id
126 schema:value 18684329
127 rdf:type schema:PropertyValue
128 N849a31177ed647df8e25d009c480e670 rdf:first sg:person.01154231750.22
129 rdf:rest N45948ce9500d4c9fb7bb52dc3a6b2bfc
130 N88f1f67a646048bdb10c2e1d7e765f3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gene Expression Profiling
132 rdf:type schema:DefinedTerm
133 Na20ebae907f44285b8ed1bbe1910bc49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Random Allocation
135 rdf:type schema:DefinedTerm
136 Nb36b652cdc344a0d880f1b289f929637 rdf:first sg:person.01104374270.94
137 rdf:rest N849a31177ed647df8e25d009c480e670
138 Nb4791d3e30384c7e97e089e6f3e19247 schema:volumeNumber 9
139 rdf:type schema:PublicationVolume
140 Nbb5bd10f3b174dbbbd265f7fca15e95f schema:issueNumber 1
141 rdf:type schema:PublicationIssue
142 Nbd6ff26d8eb849368088a639d03478d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Databases, Genetic
144 rdf:type schema:DefinedTerm
145 Ncc2cdd875ffe4b64bca4dc87d6d4e04f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Meta-Analysis as Topic
147 rdf:type schema:DefinedTerm
148 Nda8df281bfbf4d0fae45e6898ff97a0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Breast Neoplasms
150 rdf:type schema:DefinedTerm
151 Ne1ecc16069014e1ab913d275f6ca685b schema:name dimensions_id
152 schema:value pub.1051350612
153 rdf:type schema:PropertyValue
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
158 schema:name Oncology and Carcinogenesis
159 rdf:type schema:DefinedTerm
160 sg:journal.1023790 schema:issn 1471-2164
161 schema:name BMC Genomics
162 rdf:type schema:Periodical
163 sg:person.01104374270.94 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
164 schema:familyName Reyal
165 schema:givenName Fabien
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104374270.94
167 rdf:type schema:Person
168 sg:person.01154231750.22 schema:affiliation https://www.grid.ac/institutes/grid.430814.a
169 schema:familyName Horlings
170 schema:givenName Hugo M
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154231750.22
172 rdf:type schema:Person
173 sg:person.01301511174.43 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
174 schema:familyName Reinders
175 schema:givenName Marcel JT
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301511174.43
177 rdf:type schema:Person
178 sg:person.013377553177.45 schema:affiliation https://www.grid.ac/institutes/grid.430814.a
179 schema:familyName Wessels
180 schema:givenName Lodewyk FA
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377553177.45
182 rdf:type schema:Person
183 sg:person.01367247364.80 schema:affiliation https://www.grid.ac/institutes/grid.5650.6
184 schema:familyName van de Vijver
185 schema:givenName Marc J
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367247364.80
187 rdf:type schema:Person
188 sg:person.013733154414.46 schema:affiliation https://www.grid.ac/institutes/grid.430814.a
189 schema:familyName van Vliet
190 schema:givenName Martin H
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733154414.46
192 rdf:type schema:Person
193 sg:pub.10.1007/0-387-29362-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024889327
194 https://doi.org/10.1007/0-387-29362-0_3
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s10549-006-9293-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008554332
197 https://doi.org/10.1007/s10549-006-9293-x
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s10549-007-9673-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037984934
200 https://doi.org/10.1007/s10549-007-9673-x
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
203 https://doi.org/10.1038/415530a
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nature03799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030207920
206 https://doi.org/10.1038/nature03799
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ng.2007.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025460952
209 https://doi.org/10.1038/ng.2007.2
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/ng1434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024993077
212 https://doi.org/10.1038/ng1434
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nrc2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411467
215 https://doi.org/10.1038/nrc2173
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/sj.onc.1209920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977029
218 https://doi.org/10.1038/sj.onc.1209920
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/1471-2105-8-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033652981
221 https://doi.org/10.1186/1471-2105-8-275
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1471-2105-9-125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005590191
224 https://doi.org/10.1186/1471-2105-9-125
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1471-2407-7-182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043389517
227 https://doi.org/10.1186/1471-2407-7-182
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/bcr1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450491
230 https://doi.org/10.1186/bcr1325
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/bcr1650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026575398
233 https://doi.org/10.1186/bcr1650
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/bcr1771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006375768
236 https://doi.org/10.1186/bcr1771
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/bcr1798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027421084
239 https://doi.org/10.1186/bcr1798
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/gb-2006-7-10-r101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049083057
242 https://doi.org/10.1186/gb-2006-7-10-r101
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/gb-2007-8-8-r157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052735338
245 https://doi.org/10.1186/gb-2007-8-8-r157
246 rdf:type schema:CreativeWork
247 https://app.dimensions.ai/details/publication/pub.1076997356 schema:CreativeWork
248 https://doi.org/10.1002/gcc.20418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002334871
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/ijc.21954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006417211
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.ccr.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036376828
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.ydbio.2005.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035831724
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s0140-6736(05)17866-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542455
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s1470-2045(07)70042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027417986
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1038/msb4100180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007001835
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1073/pnas.022518699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028458828
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1073/pnas.0506230102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002515049
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1073/pnas.082099299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994416
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1073/pnas.102102699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034359388
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/bioinformatics/bth469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008016941
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/bioinformatics/bti429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033076641
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/bioinformatics/bti647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017381711
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/qjmed/95.4.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016032898
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1111/j.1349-7006.2007.00635.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053286165
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1111/j.1365-2559.2007.02792.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043982169
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1158/0008-5472.can-05-3960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006872615
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1158/0008-5472.can-07-0881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009880031
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1158/1078-0432.ccr-05-0285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011162518
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1158/1078-0432.ccr-05-2715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037311992
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1158/1078-0432.ccr-06-1503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014854225
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1158/1078-0432.ccr-06-1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035054052
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1158/1078-0432.ccr-06-2765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030779547
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1158/1078-0432.ccr-07-0393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045584033
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1158/1078-0432.ccr-07-1328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014856413
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1200/jco.2006.07.1522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003206258
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1371/journal.pgen.0030161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009683731
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1523/jneurosci.4651-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010831601
311 rdf:type schema:CreativeWork
312 https://doi.org/10.4049/jimmunol.177.11.7599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077325974
313 rdf:type schema:CreativeWork
314 https://www.grid.ac/institutes/grid.418596.7 schema:alternateName Institute Curie
315 schema:name Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
316 Department of Surgery, Institut Curie, 6 rue d'Ulm, 75005, Paris, France
317 rdf:type schema:Organization
318 https://www.grid.ac/institutes/grid.430814.a schema:alternateName Antoni van Leeuwenhoek Hospital
319 schema:name Bioinformatics and Statistics group, Department of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
320 Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
321 Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
322 rdf:type schema:Organization
323 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
324 schema:name Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
325 rdf:type schema:Organization
326 https://www.grid.ac/institutes/grid.5650.6 schema:alternateName Academic Medical Center
327 schema:name Department of Pathology, Academic Medical Center, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
328 Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
329 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...