Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Alessandro Fazio, Michael C Jewett, Pascale Daran-Lapujade, Roberta Mustacchi, Renata Usaite, Jack T Pronk, Christopher T Workman, Jens Nielsen

ABSTRACT

BACKGROUND: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three factors we considered were specific growth rate, nutrient limitation, and oxygen availability. RESULTS: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which mRNA expression changes are significantly associated. Among key metabolic pathways, this analysis revealed de novo synthesis of pyrimidine ribonucleotides and ATP producing and consuming reactions at fast cellular growth. By scoring the significance of overlap between growth rate dependent genes and known transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that Fhl1, Rap1, and Sfp1, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators, such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. CONCLUSION: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more conservative estimate of growth rate dependent genes than previously reported. We also provide a global view of how a small set of transcription factors, 13 in total, contribute to control of cellular growth rate. We anticipate that multi-factorial designs will play an increasing role in elucidating cellular regulation. More... »

PAGES

341

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-9-341

DOI

http://dx.doi.org/10.1186/1471-2164-9-341

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004260927

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18638364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anaerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark", 
            "Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazio", 
        "givenName": "Alessandro", 
        "id": "sg:person.01156645647.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156645647.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark", 
            "Department of Genetics, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jewett", 
        "givenName": "Michael C", 
        "id": "sg:person.0721170661.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721170661.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kluyver Centre for Genomics of Industrial Fermentation and Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daran-Lapujade", 
        "givenName": "Pascale", 
        "id": "sg:person.0576032520.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576032520.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mustacchi", 
        "givenName": "Roberta", 
        "id": "sg:person.01341207447.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341207447.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usaite", 
        "givenName": "Renata", 
        "id": "sg:person.0615603347.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615603347.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kluyver Centre for Genomics of Industrial Fermentation and Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pronk", 
        "givenName": "Jack T", 
        "id": "sg:person.0634051124.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634051124.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Workman", 
        "givenName": "Christopher T", 
        "id": "sg:person.01077751031.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077751031.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chalmers University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5371.0", 
          "name": [
            "Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark", 
            "Department of Chemical and Biological Engineering, Chalmers University of Technology, SE- 412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nielsen", 
        "givenName": "Jens", 
        "id": "sg:person.065562055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.065562055.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00494-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004873975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415180a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005267371", 
          "https://doi.org/10.1038/415180a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415180a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005267371", 
          "https://doi.org/10.1038/415180a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006618657", 
          "https://doi.org/10.1038/nature02800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006618657", 
          "https://doi.org/10.1038/nature02800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007033078", 
          "https://doi.org/10.1038/ng1965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(02)00032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007519857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(02)00032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007519857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007734343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008565589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1567-1364.2007.00302.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008881521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0308321100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010840898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011583714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012093526", 
          "https://doi.org/10.1186/jbiol54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e07-08-0779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012614194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(00)00162-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012658194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(00)00162-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012658194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m410573200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012774049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0020070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013792490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-11-r107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014469745", 
          "https://doi.org/10.1186/gb-2006-7-11-r107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0406811102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014997693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m209759200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015384492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00548-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015681132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7600553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016048570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m204490200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017030450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1833999100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017683763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019683922", 
          "https://doi.org/10.1186/1471-2105-7-203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2005.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020311519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-9-research0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023994561", 
          "https://doi.org/10.1186/gb-2002-3-9-research0048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2004.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024124135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605140103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025661857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(00)01294-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029215330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029353447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxh018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031794978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1039602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031843616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033195955", 
          "https://doi.org/10.1038/nature03200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033195955", 
          "https://doi.org/10.1038/nature03200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.2.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.071022298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038081198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039120367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(98)00249-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039483872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m309578200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040320697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040793753", 
          "https://doi.org/10.1038/nature03175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040793753", 
          "https://doi.org/10.1038/nature03175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01936-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043207376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1530509100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2007.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045764579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1228804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046825428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01460-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051595821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0405353101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051788927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1297-1359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052281386", 
          "https://doi.org/10.1038/nbt1297-1359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380050581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052835667", 
          "https://doi.org/10.1007/s004380050581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.27924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1122088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074564024", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/04372te01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076885003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082786734", 
          "https://doi.org/10.1007/bf00281618"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three factors we considered were specific growth rate, nutrient limitation, and oxygen availability.\nRESULTS: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which mRNA expression changes are significantly associated. Among key metabolic pathways, this analysis revealed de novo synthesis of pyrimidine ribonucleotides and ATP producing and consuming reactions at fast cellular growth. By scoring the significance of overlap between growth rate dependent genes and known transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that Fhl1, Rap1, and Sfp1, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators, such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets.\nCONCLUSION: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more conservative estimate of growth rate dependent genes than previously reported. We also provide a global view of how a small set of transcription factors, 13 in total, contribute to control of cellular growth rate. We anticipate that multi-factorial designs will play an increasing role in elucidating cellular regulation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-9-341", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design", 
    "pagination": "341", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "144da6af107c01f5ef4e558574994e0268032fe86038da0c41ed135b511c81ba"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18638364"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-9-341"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004260927"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-9-341", 
      "https://app.dimensions.ai/details/publication/pub.1004260927"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-9-341"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-341'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-341'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-341'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-341'


 

This table displays all metadata directly associated to this object as RDF triples.

360 TRIPLES      21 PREDICATES      98 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-9-341 schema:about N303a5cf254d64188ac92004761ad3f5b
2 N43f6c716d1de48f9ac88fdab747c6bdc
3 N592cc6b8c62449f299c97711d441ce19
4 N65ffd05c2c8e40bf82a12ecec9218644
5 N721c53b60e2a493184f9f30fd7535f00
6 N7a1569a686414a6dbbf5208c81635dbd
7 N82aa9c4142ba4cb8bccc0faa12d1792f
8 Naa5a1999addc4692acfecbeca40a5b8a
9 Nc8c9c696a6e14ea9bfde676292cdc5bd
10 Nd0974272f9ef4416a61a1dfa9dac46ef
11 Ndae531e4aca845d9848a0592c9a479da
12 Nf487e6f83cf14d938de91c4d4c66bb3b
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N445c081bf40e47b880f9da08539bfed5
16 schema:citation sg:pub.10.1007/bf00281618
17 sg:pub.10.1007/s004380050581
18 sg:pub.10.1038/415180a
19 sg:pub.10.1038/nature02800
20 sg:pub.10.1038/nature03175
21 sg:pub.10.1038/nature03200
22 sg:pub.10.1038/nbt1297-1359
23 sg:pub.10.1038/ng1965
24 sg:pub.10.1038/ng569
25 sg:pub.10.1186/1471-2105-7-203
26 sg:pub.10.1186/gb-2002-3-9-research0048
27 sg:pub.10.1186/gb-2006-7-11-r107
28 sg:pub.10.1186/jbiol54
29 https://app.dimensions.ai/details/publication/pub.1074564024
30 https://doi.org/10.1002/yea.1218
31 https://doi.org/10.1016/j.cub.2004.11.027
32 https://doi.org/10.1016/j.febslet.2007.03.053
33 https://doi.org/10.1016/j.tcb.2005.04.003
34 https://doi.org/10.1016/s0014-5793(00)01294-1
35 https://doi.org/10.1016/s0014-5793(98)00249-x
36 https://doi.org/10.1016/s0092-8674(01)00494-9
37 https://doi.org/10.1016/s0141-0229(00)00162-9
38 https://doi.org/10.1016/s0168-9525(99)01936-8
39 https://doi.org/10.1016/s0968-0004(99)01460-7
40 https://doi.org/10.1016/s1046-2023(02)00032-4
41 https://doi.org/10.1038/sj.emboj.7600553
42 https://doi.org/10.1073/pnas.0308321100
43 https://doi.org/10.1073/pnas.0405353101
44 https://doi.org/10.1073/pnas.0406811102
45 https://doi.org/10.1073/pnas.0605140103
46 https://doi.org/10.1073/pnas.071022298
47 https://doi.org/10.1073/pnas.1530509100
48 https://doi.org/10.1073/pnas.1833999100
49 https://doi.org/10.1074/jbc.m204490200
50 https://doi.org/10.1074/jbc.m209759200
51 https://doi.org/10.1074/jbc.m309578200
52 https://doi.org/10.1074/jbc.m410573200
53 https://doi.org/10.1091/mbc.e07-08-0779
54 https://doi.org/10.1093/bioinformatics/btg405
55 https://doi.org/10.1093/bioinformatics/bti746
56 https://doi.org/10.1093/biostatistics/4.2.249
57 https://doi.org/10.1093/biostatistics/kxh018
58 https://doi.org/10.1093/nar/30.1.69
59 https://doi.org/10.1093/nar/gkj109
60 https://doi.org/10.1099/mic.0.27924-0
61 https://doi.org/10.1101/gad.1039602
62 https://doi.org/10.1101/gad.1228804
63 https://doi.org/10.1101/gr.1239303
64 https://doi.org/10.1111/j.1567-1364.2007.00302.x
65 https://doi.org/10.1126/science.1070850
66 https://doi.org/10.1126/science.1075090
67 https://doi.org/10.1126/science.1122088
68 https://doi.org/10.1126/science.278.5338.680
69 https://doi.org/10.1128/aem.00548-06
70 https://doi.org/10.1198/016214504000000683
71 https://doi.org/10.1371/journal.pcbi.0020070
72 https://doi.org/10.2144/04372te01
73 schema:datePublished 2008-12
74 schema:datePublishedReg 2008-12-01
75 schema:description BACKGROUND: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three factors we considered were specific growth rate, nutrient limitation, and oxygen availability. RESULTS: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which mRNA expression changes are significantly associated. Among key metabolic pathways, this analysis revealed de novo synthesis of pyrimidine ribonucleotides and ATP producing and consuming reactions at fast cellular growth. By scoring the significance of overlap between growth rate dependent genes and known transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that Fhl1, Rap1, and Sfp1, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators, such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. CONCLUSION: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more conservative estimate of growth rate dependent genes than previously reported. We also provide a global view of how a small set of transcription factors, 13 in total, contribute to control of cellular growth rate. We anticipate that multi-factorial designs will play an increasing role in elucidating cellular regulation.
76 schema:genre research_article
77 schema:inLanguage en
78 schema:isAccessibleForFree true
79 schema:isPartOf N6a558c25e23e41c39a150120c4b8a3f4
80 Nd35cd787a1eb4bdfbe8d3913b5bd71ff
81 sg:journal.1023790
82 schema:name Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design
83 schema:pagination 341
84 schema:productId N058eecf9e217408aa6251e6cbabf6a5c
85 N78bb5f65a9cc440eb63d7c56b57e7ae6
86 Na32c167b23004c29b0635e4b17495a07
87 Nf7947992f67341b98b298ce6b5f94668
88 Nfde000b86fb8477d86fd476cf6fac540
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004260927
90 https://doi.org/10.1186/1471-2164-9-341
91 schema:sdDatePublished 2019-04-11T01:58
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N4c489fbd95594ebc9e8fdccf5e917cad
94 schema:url http://link.springer.com/10.1186%2F1471-2164-9-341
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N058eecf9e217408aa6251e6cbabf6a5c schema:name dimensions_id
99 schema:value pub.1004260927
100 rdf:type schema:PropertyValue
101 N2fc2bdf011d74b4da51f5b2f7a31468d rdf:first sg:person.01341207447.82
102 rdf:rest Nd0b5f89f66db42d6b360854ed25fc55c
103 N303a5cf254d64188ac92004761ad3f5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Nitrogen
105 rdf:type schema:DefinedTerm
106 N43f6c716d1de48f9ac88fdab747c6bdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Transcription, Genetic
108 rdf:type schema:DefinedTerm
109 N445c081bf40e47b880f9da08539bfed5 rdf:first sg:person.01156645647.81
110 rdf:rest Nb90cb3f3bd984093a2d9e38850e7b445
111 N4c489fbd95594ebc9e8fdccf5e917cad schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N592cc6b8c62449f299c97711d441ce19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genes, Fungal
115 rdf:type schema:DefinedTerm
116 N65ffd05c2c8e40bf82a12ecec9218644 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Gene Expression Regulation, Fungal
118 rdf:type schema:DefinedTerm
119 N6a558c25e23e41c39a150120c4b8a3f4 schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 N721c53b60e2a493184f9f30fd7535f00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Saccharomyces cerevisiae
123 rdf:type schema:DefinedTerm
124 N78bb5f65a9cc440eb63d7c56b57e7ae6 schema:name pubmed_id
125 schema:value 18638364
126 rdf:type schema:PropertyValue
127 N7a1569a686414a6dbbf5208c81635dbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name RNA, Fungal
129 rdf:type schema:DefinedTerm
130 N82aa9c4142ba4cb8bccc0faa12d1792f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gene Expression Profiling
132 rdf:type schema:DefinedTerm
133 N84f25d3e11ff4e7d8e14675c0c53b628 rdf:first sg:person.01077751031.13
134 rdf:rest Nb69d77a28adf4838b1bc8e8acabcc60a
135 Na32c167b23004c29b0635e4b17495a07 schema:name nlm_unique_id
136 schema:value 100965258
137 rdf:type schema:PropertyValue
138 Naa5a1999addc4692acfecbeca40a5b8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aerobiosis
140 rdf:type schema:DefinedTerm
141 Nb69d77a28adf4838b1bc8e8acabcc60a rdf:first sg:person.065562055.72
142 rdf:rest rdf:nil
143 Nb90cb3f3bd984093a2d9e38850e7b445 rdf:first sg:person.0721170661.25
144 rdf:rest Nd9900ac92fbd46c9a1995b6dde8af13d
145 Nc8c9c696a6e14ea9bfde676292cdc5bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Carbon
147 rdf:type schema:DefinedTerm
148 Nd0974272f9ef4416a61a1dfa9dac46ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Oligonucleotide Array Sequence Analysis
150 rdf:type schema:DefinedTerm
151 Nd0b5f89f66db42d6b360854ed25fc55c rdf:first sg:person.0615603347.42
152 rdf:rest Ndacd4fea30ed40eeb8159b15c69a7103
153 Nd35cd787a1eb4bdfbe8d3913b5bd71ff schema:volumeNumber 9
154 rdf:type schema:PublicationVolume
155 Nd9900ac92fbd46c9a1995b6dde8af13d rdf:first sg:person.0576032520.78
156 rdf:rest N2fc2bdf011d74b4da51f5b2f7a31468d
157 Ndacd4fea30ed40eeb8159b15c69a7103 rdf:first sg:person.0634051124.71
158 rdf:rest N84f25d3e11ff4e7d8e14675c0c53b628
159 Ndae531e4aca845d9848a0592c9a479da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Transcription Factors
161 rdf:type schema:DefinedTerm
162 Nf487e6f83cf14d938de91c4d4c66bb3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Anaerobiosis
164 rdf:type schema:DefinedTerm
165 Nf7947992f67341b98b298ce6b5f94668 schema:name readcube_id
166 schema:value 144da6af107c01f5ef4e558574994e0268032fe86038da0c41ed135b511c81ba
167 rdf:type schema:PropertyValue
168 Nfde000b86fb8477d86fd476cf6fac540 schema:name doi
169 schema:value 10.1186/1471-2164-9-341
170 rdf:type schema:PropertyValue
171 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
172 schema:name Biological Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
175 schema:name Genetics
176 rdf:type schema:DefinedTerm
177 sg:journal.1023790 schema:issn 1471-2164
178 schema:name BMC Genomics
179 rdf:type schema:Periodical
180 sg:person.01077751031.13 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
181 schema:familyName Workman
182 schema:givenName Christopher T
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077751031.13
184 rdf:type schema:Person
185 sg:person.01156645647.81 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
186 schema:familyName Fazio
187 schema:givenName Alessandro
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156645647.81
189 rdf:type schema:Person
190 sg:person.01341207447.82 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
191 schema:familyName Mustacchi
192 schema:givenName Roberta
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341207447.82
194 rdf:type schema:Person
195 sg:person.0576032520.78 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
196 schema:familyName Daran-Lapujade
197 schema:givenName Pascale
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576032520.78
199 rdf:type schema:Person
200 sg:person.0615603347.42 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
201 schema:familyName Usaite
202 schema:givenName Renata
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615603347.42
204 rdf:type schema:Person
205 sg:person.0634051124.71 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
206 schema:familyName Pronk
207 schema:givenName Jack T
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634051124.71
209 rdf:type schema:Person
210 sg:person.065562055.72 schema:affiliation https://www.grid.ac/institutes/grid.5371.0
211 schema:familyName Nielsen
212 schema:givenName Jens
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.065562055.72
214 rdf:type schema:Person
215 sg:person.0721170661.25 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
216 schema:familyName Jewett
217 schema:givenName Michael C
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721170661.25
219 rdf:type schema:Person
220 sg:pub.10.1007/bf00281618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082786734
221 https://doi.org/10.1007/bf00281618
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s004380050581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052835667
224 https://doi.org/10.1007/s004380050581
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/415180a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267371
227 https://doi.org/10.1038/415180a
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nature02800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006618657
230 https://doi.org/10.1038/nature02800
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nature03175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040793753
233 https://doi.org/10.1038/nature03175
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nature03200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033195955
236 https://doi.org/10.1038/nature03200
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nbt1297-1359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052281386
239 https://doi.org/10.1038/nbt1297-1359
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/ng1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007033078
242 https://doi.org/10.1038/ng1965
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ng569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056459183
245 https://doi.org/10.1038/ng569
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1471-2105-7-203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019683922
248 https://doi.org/10.1186/1471-2105-7-203
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/gb-2002-3-9-research0048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994561
251 https://doi.org/10.1186/gb-2002-3-9-research0048
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/gb-2006-7-11-r107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014469745
254 https://doi.org/10.1186/gb-2006-7-11-r107
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/jbiol54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012093526
257 https://doi.org/10.1186/jbiol54
258 rdf:type schema:CreativeWork
259 https://app.dimensions.ai/details/publication/pub.1074564024 schema:CreativeWork
260 https://doi.org/10.1002/yea.1218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011583714
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.cub.2004.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024124135
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.febslet.2007.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045764579
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.tcb.2005.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020311519
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/s0014-5793(00)01294-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029215330
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/s0014-5793(98)00249-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039483872
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/s0092-8674(01)00494-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004873975
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/s0141-0229(00)00162-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658194
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/s0168-9525(99)01936-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043207376
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/s0968-0004(99)01460-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051595821
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/s1046-2023(02)00032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007519857
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1038/sj.emboj.7600553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016048570
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1073/pnas.0308321100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010840898
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1073/pnas.0405353101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051788927
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1073/pnas.0406811102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014997693
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1073/pnas.0605140103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025661857
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1073/pnas.071022298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038081198
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1073/pnas.1833999100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017683763
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1074/jbc.m204490200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017030450
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1074/jbc.m209759200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015384492
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1074/jbc.m309578200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040320697
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1074/jbc.m410573200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012774049
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1091/mbc.e07-08-0779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012614194
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1093/bioinformatics/btg405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878496
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1093/bioinformatics/bti746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039120367
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1093/biostatistics/4.2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543114
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1093/biostatistics/kxh018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031794978
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1093/nar/30.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008565589
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1093/nar/gkj109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007734343
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1099/mic.0.27924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397420
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1101/gad.1039602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031843616
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1101/gad.1228804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046825428
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1111/j.1567-1364.2007.00302.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008881521
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1126/science.1070850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029353447
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1126/science.1122088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453356
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1128/aem.00548-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015681132
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1198/016214504000000683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198205
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1371/journal.pcbi.0020070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013792490
343 rdf:type schema:CreativeWork
344 https://doi.org/10.2144/04372te01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076885003
345 rdf:type schema:CreativeWork
346 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
347 schema:name Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark
348 Department of Genetics, Harvard Medical School, 02115, Boston, MA, USA
349 rdf:type schema:Organization
350 https://www.grid.ac/institutes/grid.5170.3 schema:alternateName Technical University of Denmark
351 schema:name Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs, Lyngby, Denmark
352 Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark
353 rdf:type schema:Organization
354 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
355 schema:name Kluyver Centre for Genomics of Industrial Fermentation and Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
356 rdf:type schema:Organization
357 https://www.grid.ac/institutes/grid.5371.0 schema:alternateName Chalmers University of Technology
358 schema:name Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs. Lyngby, Denmark
359 Department of Chemical and Biological Engineering, Chalmers University of Technology, SE- 412 96, Gothenburg, Sweden
360 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...