Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Mehar S Khatkar, Frank W Nicholas, Andrew R Collins, Kyall R Zenger, Julie AL Cavanagh, Wes Barris, Robert D Schnabel, Jeremy F Taylor, Herman W Raadsma

ABSTRACT

BACKGROUND: The extent of linkage disequilibrium (LD) within a population determines the number of markers that will be required for successful association mapping and marker-assisted selection. Most studies on LD in cattle reported to date are based on microsatellite markers or small numbers of single nucleotide polymorphisms (SNPs) covering one or only a few chromosomes. This is the first comprehensive study on the extent of LD in cattle by analyzing data on 1,546 Holstein-Friesian bulls genotyped for 15,036 SNP markers covering all regions of all autosomes. Furthermore, most studies in cattle have used relatively small sample sizes and, consequently, may have had biased estimates of measures commonly used to describe LD. We examine minimum sample sizes required to estimate LD without bias and loss in accuracy. Finally, relatively little information is available on comparative LD structures including other mammalian species such as human and mouse, and we compare LD structure in cattle with public-domain data from both human and mouse. RESULTS: We computed three LD estimates, D', Dvol and r2, for 1,566,890 syntenic SNP pairs and a sample of 365,400 non-syntenic pairs. Mean D' is 0.189 among syntenic SNPs, and 0.105 among non-syntenic SNPs; mean r2 is 0.024 among syntenic SNPs and 0.0032 among non-syntenic SNPs. All three measures of LD for syntenic pairs decline with distance; the decline is much steeper for r2 than for D' and Dvol. The value of D' and Dvol are quite similar. Significant LD in cattle extends to 40 kb (when estimated as r2) and 8.2 Mb (when estimated as D'). The mean values for LD at large physical distances are close to those for non-syntenic SNPs. Minor allelic frequency threshold affects the distribution and extent of LD. For unbiased and accurate estimates of LD across marker intervals spanning < 1 kb to > 50 Mb, minimum sample sizes of 400 (for D') and 75 (for r2) are required. The bias due to small samples sizes increases with inter-marker interval. LD in cattle is much less extensive than in a mouse population created from crossing inbred lines, and more extensive than in humans. CONCLUSION: For association mapping in Holstein-Friesian cattle, for a given design, at least one SNP is required for each 40 kb, giving a total requirement of at least 75,000 SNPs for a low power whole-genome scan (median r2 > 0.19) and up to 300,000 markers at 10 kb intervals for a high power genome scan (median r2 > 0.62). For estimation of LD by D' and Dvol with sufficient precision, a sample size of at least 400 is required, whereas for r2 a minimum sample of 75 is adequate. More... »

PAGES

187

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-9-187

DOI

http://dx.doi.org/10.1186/1471-2164-9-187

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052463226

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18435834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synteny", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, 2570, Camden, NSW, Australia", 
            "CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khatkar", 
        "givenName": "Mehar S", 
        "id": "sg:person.01334710673.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334710673.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, 2570, Camden, NSW, Australia", 
            "CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicholas", 
        "givenName": "Frank W", 
        "id": "sg:person.01063334170.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063334170.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Human Genetics Division, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "Andrew R", 
        "id": "sg:person.016260027617.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260027617.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, 2570, Camden, NSW, Australia", 
            "CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zenger", 
        "givenName": "Kyall R", 
        "id": "sg:person.01112745262.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112745262.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, 2570, Camden, NSW, Australia", 
            "CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cavanagh", 
        "givenName": "Julie AL", 
        "id": "sg:person.016116060122.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016116060122.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Animal, Food and Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.417660.2", 
          "name": [
            "CSIRO Livestock Industries, 4067, St Lucia, QLD, Australia", 
            "CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barris", 
        "givenName": "Wes", 
        "id": "sg:person.0663053753.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663053753.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schnabel", 
        "givenName": "Robert D", 
        "id": "sg:person.0647403151.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647403151.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Jeremy F", 
        "id": "sg:person.01365227460.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365227460.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, 2570, Camden, NSW, Australia", 
            "CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raadsma", 
        "givenName": "Herman W", 
        "id": "sg:person.01343135622.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343135622.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2156-8-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000111034", 
          "https://doi.org/10.1186/1471-2156-8-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000411452", 
          "https://doi.org/10.1038/ng1840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000411452", 
          "https://doi.org/10.1038/ng1840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000451502", 
          "https://doi.org/10.1038/nrg777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000451502", 
          "https://doi.org/10.1038/nrg777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70578-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002818379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.144500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003096605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/abio-200053402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003796230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004166133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004166133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004749772", 
          "https://doi.org/10.1038/nrg1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004749772", 
          "https://doi.org/10.1038/nrg1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2006.39.2.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004890075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005941767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2005.01400.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2005.01400.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720785", 
          "https://doi.org/10.1038/nrg1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720785", 
          "https://doi.org/10.1038/nrg1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.2.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008927947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-003-2272-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010624839", 
          "https://doi.org/10.1007/s00335-003-2272-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-004-2382-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012352579", 
          "https://doi.org/10.1007/s00335-004-2382-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.042680999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013604984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2004.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014915185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01245622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015240505", 
          "https://doi.org/10.1007/bf01245622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015741729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015741729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016397782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.060418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.060418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/321275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026846351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-38-5-463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027258559", 
          "https://doi.org/10.1186/1297-9686-38-5-463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(01)02550-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028714464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.2.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029509736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-6-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031122262", 
          "https://doi.org/10.1186/1471-2164-6-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-7-54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031610428", 
          "https://doi.org/10.1186/1471-2156-7-54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.3.1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037252263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.3.1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037252263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1995.9003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14737159.5.2.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041472488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.040782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042724761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.040782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042724761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.091062198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045433307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2006.01543.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048458256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050284813", 
          "https://doi.org/10.1038/ng1547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050284813", 
          "https://doi.org/10.1038/ng1547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3147604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052493985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2006.00305.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052963731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s001667230500769x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053941347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s001667230500769x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053941347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2003.813617x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070882352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075016608", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(03)74028-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076629605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077175757", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358164", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079885663", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082630042", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: The extent of linkage disequilibrium (LD) within a population determines the number of markers that will be required for successful association mapping and marker-assisted selection. Most studies on LD in cattle reported to date are based on microsatellite markers or small numbers of single nucleotide polymorphisms (SNPs) covering one or only a few chromosomes. This is the first comprehensive study on the extent of LD in cattle by analyzing data on 1,546 Holstein-Friesian bulls genotyped for 15,036 SNP markers covering all regions of all autosomes. Furthermore, most studies in cattle have used relatively small sample sizes and, consequently, may have had biased estimates of measures commonly used to describe LD. We examine minimum sample sizes required to estimate LD without bias and loss in accuracy. Finally, relatively little information is available on comparative LD structures including other mammalian species such as human and mouse, and we compare LD structure in cattle with public-domain data from both human and mouse.\nRESULTS: We computed three LD estimates, D', Dvol and r2, for 1,566,890 syntenic SNP pairs and a sample of 365,400 non-syntenic pairs. Mean D' is 0.189 among syntenic SNPs, and 0.105 among non-syntenic SNPs; mean r2 is 0.024 among syntenic SNPs and 0.0032 among non-syntenic SNPs. All three measures of LD for syntenic pairs decline with distance; the decline is much steeper for r2 than for D' and Dvol. The value of D' and Dvol are quite similar. Significant LD in cattle extends to 40 kb (when estimated as r2) and 8.2 Mb (when estimated as D'). The mean values for LD at large physical distances are close to those for non-syntenic SNPs. Minor allelic frequency threshold affects the distribution and extent of LD. For unbiased and accurate estimates of LD across marker intervals spanning < 1 kb to > 50 Mb, minimum sample sizes of 400 (for D') and 75 (for r2) are required. The bias due to small samples sizes increases with inter-marker interval. LD in cattle is much less extensive than in a mouse population created from crossing inbred lines, and more extensive than in humans.\nCONCLUSION: For association mapping in Holstein-Friesian cattle, for a given design, at least one SNP is required for each 40 kb, giving a total requirement of at least 75,000 SNPs for a low power whole-genome scan (median r2 > 0.19) and up to 300,000 markers at 10 kb intervals for a high power genome scan (median r2 > 0.62). For estimation of LD by D' and Dvol with sufficient precision, a sample size of at least 400 is required, whereas for r2 a minimum sample of 75 is adequate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-9-187", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel", 
    "pagination": "187", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9e63b2c0b4cfe324e276abfaf729b98bddc9efd8794eb9a7e074b4d9291894e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18435834"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-9-187"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052463226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-9-187", 
      "https://app.dimensions.ai/details/publication/pub.1052463226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-9-187"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-187'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-187'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-187'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-9-187'


 

This table displays all metadata directly associated to this object as RDF triples.

327 TRIPLES      21 PREDICATES      87 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-9-187 schema:about N37d4778c7cd3438894177c16a4c167db
2 N9162f29befc548749db8f6d76f4448ad
3 N94e707c2a6174258b64f40c27a9c133b
4 Nb080b79bd92d4bf0a552893b26b7d282
5 Nbc8ee7e969bb4d4cb56958cfb43264c8
6 Nc2fb50bfeb844b73a1d4dfab00329628
7 Nd5793695522e4ec18b4f2931c793aa9c
8 Nd747dbbcff5c4a6f86963256c065519a
9 Nda2fa56396d444fa86f08643b7bfa0ca
10 Ndb80de3d12024fb290b7a6b455ca0665
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N7df8540096c341699be7f836415d6ff5
14 schema:citation sg:pub.10.1007/bf01245622
15 sg:pub.10.1007/s00335-003-2272-1
16 sg:pub.10.1007/s00335-004-2382-4
17 sg:pub.10.1038/nature04226
18 sg:pub.10.1038/ng1547
19 sg:pub.10.1038/ng1840
20 sg:pub.10.1038/nrg1123
21 sg:pub.10.1038/nrg1270
22 sg:pub.10.1038/nrg1521
23 sg:pub.10.1038/nrg777
24 sg:pub.10.1186/1297-9686-38-5-463
25 sg:pub.10.1186/1471-2156-7-54
26 sg:pub.10.1186/1471-2156-8-74
27 sg:pub.10.1186/1471-2164-6-74
28 https://app.dimensions.ai/details/publication/pub.1075016608
29 https://app.dimensions.ai/details/publication/pub.1077175757
30 https://app.dimensions.ai/details/publication/pub.1077358164
31 https://app.dimensions.ai/details/publication/pub.1079885663
32 https://app.dimensions.ai/details/publication/pub.1082630042
33 https://doi.org/10.1006/geno.1995.9003
34 https://doi.org/10.1016/j.gene.2004.10.011
35 https://doi.org/10.1016/j.tig.2006.04.006
36 https://doi.org/10.1016/s0168-9525(01)02550-1
37 https://doi.org/10.1016/s1474-4422(06)70578-6
38 https://doi.org/10.1017/s001667230500769x
39 https://doi.org/10.1073/pnas.042680999
40 https://doi.org/10.1073/pnas.091062198
41 https://doi.org/10.1081/abio-200053402
42 https://doi.org/10.1086/321275
43 https://doi.org/10.1093/bioinformatics/16.2.182
44 https://doi.org/10.1093/bioinformatics/bth457
45 https://doi.org/10.1101/gr.10.2.220
46 https://doi.org/10.1101/gr.144500
47 https://doi.org/10.1101/gr.224202
48 https://doi.org/10.1101/gr.3147604
49 https://doi.org/10.1111/j.1365-2052.2005.01400.x
50 https://doi.org/10.1111/j.1365-2052.2006.01543.x
51 https://doi.org/10.1111/j.1469-1809.2006.00305.x
52 https://doi.org/10.1126/science.1069424
53 https://doi.org/10.1534/genetics.105.040782
54 https://doi.org/10.1534/genetics.106.060418
55 https://doi.org/10.1534/genetics.106.069369
56 https://doi.org/10.1534/genetics.107.075804
57 https://doi.org/10.1534/genetics.166.3.1395
58 https://doi.org/10.1586/14737159.5.2.159
59 https://doi.org/10.2527/2003.813617x
60 https://doi.org/10.3168/jds.s0022-0302(03)74028-4
61 https://doi.org/10.5483/bmbrep.2006.39.2.183
62 schema:datePublished 2008-12
63 schema:datePublishedReg 2008-12-01
64 schema:description BACKGROUND: The extent of linkage disequilibrium (LD) within a population determines the number of markers that will be required for successful association mapping and marker-assisted selection. Most studies on LD in cattle reported to date are based on microsatellite markers or small numbers of single nucleotide polymorphisms (SNPs) covering one or only a few chromosomes. This is the first comprehensive study on the extent of LD in cattle by analyzing data on 1,546 Holstein-Friesian bulls genotyped for 15,036 SNP markers covering all regions of all autosomes. Furthermore, most studies in cattle have used relatively small sample sizes and, consequently, may have had biased estimates of measures commonly used to describe LD. We examine minimum sample sizes required to estimate LD without bias and loss in accuracy. Finally, relatively little information is available on comparative LD structures including other mammalian species such as human and mouse, and we compare LD structure in cattle with public-domain data from both human and mouse. RESULTS: We computed three LD estimates, D', Dvol and r2, for 1,566,890 syntenic SNP pairs and a sample of 365,400 non-syntenic pairs. Mean D' is 0.189 among syntenic SNPs, and 0.105 among non-syntenic SNPs; mean r2 is 0.024 among syntenic SNPs and 0.0032 among non-syntenic SNPs. All three measures of LD for syntenic pairs decline with distance; the decline is much steeper for r2 than for D' and Dvol. The value of D' and Dvol are quite similar. Significant LD in cattle extends to 40 kb (when estimated as r2) and 8.2 Mb (when estimated as D'). The mean values for LD at large physical distances are close to those for non-syntenic SNPs. Minor allelic frequency threshold affects the distribution and extent of LD. For unbiased and accurate estimates of LD across marker intervals spanning < 1 kb to > 50 Mb, minimum sample sizes of 400 (for D') and 75 (for r2) are required. The bias due to small samples sizes increases with inter-marker interval. LD in cattle is much less extensive than in a mouse population created from crossing inbred lines, and more extensive than in humans. CONCLUSION: For association mapping in Holstein-Friesian cattle, for a given design, at least one SNP is required for each 40 kb, giving a total requirement of at least 75,000 SNPs for a low power whole-genome scan (median r2 > 0.19) and up to 300,000 markers at 10 kb intervals for a high power genome scan (median r2 > 0.62). For estimation of LD by D' and Dvol with sufficient precision, a sample size of at least 400 is required, whereas for r2 a minimum sample of 75 is adequate.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf Ndb56592330414ee087566d1ffa24321c
69 Nefca56bcba5d4c938ec353068911389f
70 sg:journal.1023790
71 schema:name Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel
72 schema:pagination 187
73 schema:productId N0910825626cc417ab014d89b4be9e29b
74 N180a4f54a2334def84e4f49c9a719081
75 N221a2cb48f34430b92a13c94c11feb4c
76 N3cba72f8c98640cfa646d7bf350f3c27
77 N584bbca0e8504093b980a6ba0957d8f3
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052463226
79 https://doi.org/10.1186/1471-2164-9-187
80 schema:sdDatePublished 2019-04-11T00:23
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nf2c5a7f631ef4aafbc46c544ee330af8
83 schema:url http://link.springer.com/10.1186%2F1471-2164-9-187
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N06f3c2e2b73e413b95e79266faafe17d rdf:first sg:person.016116060122.35
88 rdf:rest Nf60fbdcbc34048e1b319831a60541c9d
89 N0910825626cc417ab014d89b4be9e29b schema:name doi
90 schema:value 10.1186/1471-2164-9-187
91 rdf:type schema:PropertyValue
92 N180a4f54a2334def84e4f49c9a719081 schema:name dimensions_id
93 schema:value pub.1052463226
94 rdf:type schema:PropertyValue
95 N1e9e2b5c649c4a088b525adc93e27d2d rdf:first sg:person.01112745262.98
96 rdf:rest N06f3c2e2b73e413b95e79266faafe17d
97 N221a2cb48f34430b92a13c94c11feb4c schema:name nlm_unique_id
98 schema:value 100965258
99 rdf:type schema:PropertyValue
100 N25d4e489e0254b35af1d368c953877a9 rdf:first sg:person.0647403151.31
101 rdf:rest Nacac54c32a1e4a8ca924634f7dc93541
102 N3629010747a34113a6cdb2d629514c03 rdf:first sg:person.01343135622.27
103 rdf:rest rdf:nil
104 N37d4778c7cd3438894177c16a4c167db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Genome
106 rdf:type schema:DefinedTerm
107 N3cba72f8c98640cfa646d7bf350f3c27 schema:name readcube_id
108 schema:value f9e63b2c0b4cfe324e276abfaf729b98bddc9efd8794eb9a7e074b4d9291894e
109 rdf:type schema:PropertyValue
110 N4c927e5b65d64445af06bdb9fe91fd77 rdf:first sg:person.016260027617.73
111 rdf:rest N1e9e2b5c649c4a088b525adc93e27d2d
112 N584bbca0e8504093b980a6ba0957d8f3 schema:name pubmed_id
113 schema:value 18435834
114 rdf:type schema:PropertyValue
115 N7df8540096c341699be7f836415d6ff5 rdf:first sg:person.01334710673.51
116 rdf:rest Nd1b4f9a4d3eb4b0a8e61c98970de3ed3
117 N9162f29befc548749db8f6d76f4448ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Mice
119 rdf:type schema:DefinedTerm
120 N94e707c2a6174258b64f40c27a9c133b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Polymorphism, Single Nucleotide
122 rdf:type schema:DefinedTerm
123 Nacac54c32a1e4a8ca924634f7dc93541 rdf:first sg:person.01365227460.97
124 rdf:rest N3629010747a34113a6cdb2d629514c03
125 Nb080b79bd92d4bf0a552893b26b7d282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Frequency
127 rdf:type schema:DefinedTerm
128 Nbc8ee7e969bb4d4cb56958cfb43264c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Animals
130 rdf:type schema:DefinedTerm
131 Nc2fb50bfeb844b73a1d4dfab00329628 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Linkage Disequilibrium
133 rdf:type schema:DefinedTerm
134 Nd1b4f9a4d3eb4b0a8e61c98970de3ed3 rdf:first sg:person.01063334170.28
135 rdf:rest N4c927e5b65d64445af06bdb9fe91fd77
136 Nd491156fe9614f9db29e782042a62d12 schema:name Human Genetics Division, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
137 rdf:type schema:Organization
138 Nd5793695522e4ec18b4f2931c793aa9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Synteny
140 rdf:type schema:DefinedTerm
141 Nd747dbbcff5c4a6f86963256c065519a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Cattle
143 rdf:type schema:DefinedTerm
144 Nda2fa56396d444fa86f08643b7bfa0ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Male
146 rdf:type schema:DefinedTerm
147 Ndb56592330414ee087566d1ffa24321c schema:issueNumber 1
148 rdf:type schema:PublicationIssue
149 Ndb80de3d12024fb290b7a6b455ca0665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Humans
151 rdf:type schema:DefinedTerm
152 Nefca56bcba5d4c938ec353068911389f schema:volumeNumber 9
153 rdf:type schema:PublicationVolume
154 Nf2c5a7f631ef4aafbc46c544ee330af8 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 Nf60fbdcbc34048e1b319831a60541c9d rdf:first sg:person.0663053753.47
157 rdf:rest N25d4e489e0254b35af1d368c953877a9
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
162 schema:name Genetics
163 rdf:type schema:DefinedTerm
164 sg:journal.1023790 schema:issn 1471-2164
165 schema:name BMC Genomics
166 rdf:type schema:Periodical
167 sg:person.01063334170.28 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
168 schema:familyName Nicholas
169 schema:givenName Frank W
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063334170.28
171 rdf:type schema:Person
172 sg:person.01112745262.98 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
173 schema:familyName Zenger
174 schema:givenName Kyall R
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112745262.98
176 rdf:type schema:Person
177 sg:person.01334710673.51 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
178 schema:familyName Khatkar
179 schema:givenName Mehar S
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334710673.51
181 rdf:type schema:Person
182 sg:person.01343135622.27 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
183 schema:familyName Raadsma
184 schema:givenName Herman W
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343135622.27
186 rdf:type schema:Person
187 sg:person.01365227460.97 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
188 schema:familyName Taylor
189 schema:givenName Jeremy F
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365227460.97
191 rdf:type schema:Person
192 sg:person.016116060122.35 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
193 schema:familyName Cavanagh
194 schema:givenName Julie AL
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016116060122.35
196 rdf:type schema:Person
197 sg:person.016260027617.73 schema:affiliation Nd491156fe9614f9db29e782042a62d12
198 schema:familyName Collins
199 schema:givenName Andrew R
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260027617.73
201 rdf:type schema:Person
202 sg:person.0647403151.31 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
203 schema:familyName Schnabel
204 schema:givenName Robert D
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647403151.31
206 rdf:type schema:Person
207 sg:person.0663053753.47 schema:affiliation https://www.grid.ac/institutes/grid.417660.2
208 schema:familyName Barris
209 schema:givenName Wes
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663053753.47
211 rdf:type schema:Person
212 sg:pub.10.1007/bf01245622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240505
213 https://doi.org/10.1007/bf01245622
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00335-003-2272-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010624839
216 https://doi.org/10.1007/s00335-003-2272-1
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s00335-004-2382-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012352579
219 https://doi.org/10.1007/s00335-004-2382-4
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
222 https://doi.org/10.1038/nature04226
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ng1547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050284813
225 https://doi.org/10.1038/ng1547
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/ng1840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000411452
228 https://doi.org/10.1038/ng1840
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nrg1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004749772
231 https://doi.org/10.1038/nrg1123
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrg1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008720785
234 https://doi.org/10.1038/nrg1270
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrg1521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754728
237 https://doi.org/10.1038/nrg1521
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nrg777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000451502
240 https://doi.org/10.1038/nrg777
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1297-9686-38-5-463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027258559
243 https://doi.org/10.1186/1297-9686-38-5-463
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1471-2156-7-54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031610428
246 https://doi.org/10.1186/1471-2156-7-54
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/1471-2156-8-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000111034
249 https://doi.org/10.1186/1471-2156-8-74
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/1471-2164-6-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031122262
252 https://doi.org/10.1186/1471-2164-6-74
253 rdf:type schema:CreativeWork
254 https://app.dimensions.ai/details/publication/pub.1075016608 schema:CreativeWork
255 https://app.dimensions.ai/details/publication/pub.1077175757 schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1077358164 schema:CreativeWork
257 https://app.dimensions.ai/details/publication/pub.1079885663 schema:CreativeWork
258 https://app.dimensions.ai/details/publication/pub.1082630042 schema:CreativeWork
259 https://doi.org/10.1006/geno.1995.9003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103610
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.gene.2004.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014915185
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.tig.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016397782
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/s0168-9525(01)02550-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028714464
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/s1474-4422(06)70578-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002818379
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1017/s001667230500769x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053941347
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1073/pnas.042680999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013604984
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1073/pnas.091062198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045433307
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1081/abio-200053402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003796230
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1086/321275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026846351
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1093/bioinformatics/16.2.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008927947
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1101/gr.10.2.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029509736
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1101/gr.144500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003096605
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1101/gr.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005941767
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1101/gr.3147604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052493985
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1111/j.1365-2052.2005.01400.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006984993
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1111/j.1365-2052.2006.01543.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048458256
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1111/j.1469-1809.2006.00305.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052963731
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1534/genetics.105.040782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042724761
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1534/genetics.106.060418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058041
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1534/genetics.106.069369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004166133
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1534/genetics.107.075804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015741729
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1534/genetics.166.3.1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037252263
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1586/14737159.5.2.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041472488
310 rdf:type schema:CreativeWork
311 https://doi.org/10.2527/2003.813617x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882352
312 rdf:type schema:CreativeWork
313 https://doi.org/10.3168/jds.s0022-0302(03)74028-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076629605
314 rdf:type schema:CreativeWork
315 https://doi.org/10.5483/bmbrep.2006.39.2.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004890075
316 rdf:type schema:CreativeWork
317 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
318 schema:name CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia
319 Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, 2570, Camden, NSW, Australia
320 rdf:type schema:Organization
321 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
322 schema:name Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA
323 rdf:type schema:Organization
324 https://www.grid.ac/institutes/grid.417660.2 schema:alternateName Animal, Food and Health Sciences
325 schema:name CRC for Innovative Dairy Products, Level 1, 84 William Street, 3000, Melbourne, Vic, Australia
326 CSIRO Livestock Industries, 4067, St Lucia, QLD, Australia
327 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...