Detection of RNA structures in porcine EST data and related mammals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Stefan E Seemann, Michael J Gilchrist, Ivo L Hofacker, Peter F Stadler, Jan Gorodkin

ABSTRACT

BACKGROUND: Non-coding RNAs (ncRNAs) are involved in a wide spectrum of regulatory functions. Within recent years, there have been increasing reports of observed polyadenylated ncRNAs and mRNA like ncRNAs in eukaryotes. To investigate this further, we examined the large data set in the Sino-Danish PigEST resource http://pigest.ku.dk which also contains expression information distributed on 97 non-normalized cDNA libraries. RESULTS: We constructed a pipeline, EST2ncRNA, to search for known and novel ncRNAs. The pipeline utilises sequence similarity to ncRNA databases (blast), structure similarity to Rfam (RaveNnA) as well as multiple alignments to predict conserved novel putative RNA structures (RNAz). EST2ncRNA was fed with 48,000 contigs and 73,000 singletons available from the PigEST resource. Using the pipeline we identified known RNA structures in 137 contigs and single reads (conreads), and predicted high confidence RNA structures in non-protein coding regions of additional 1,262 conreads. Of these, structures in 270 conreads overlap with existing predictions in human. To sum up, the PigEST resource comprises trans-acting elements (ncRNAs) in 715 contigs and 340 singletons as well as cis-acting elements (inside UTRs) in 311 contigs and 51 singletons, of which 18 conreads contain both predictions of trans- and cis-acting elements. The predicted RNAz candidates were compared with the PigEST expression information and we identify 114 contigs with an RNAz prediction and expression in at least ten of the non-normalised cDNA libraries. We conclude that the contigs with RNAz and known predictions are in general expressed at a much lower level than protein coding transcripts. In addition, we also observe that our ncRNA candidates constitute about one to two percent of the genes expressed in the cDNA libraries. Intriguingly, the cDNA libraries from developmental (brain) tissues contain the highest amount of ncRNA candidates, about two percent. These observations are related to existing knowledge and hypotheses about the role of ncRNAs in higher organisms. Furthermore, about 80% porcine coding transcripts (of 18,600 identified) as well as less than one-third ORF-free transcripts are conserved at least in the closely related bovine genome. Approximately one percent of the coding and 10% of the remaining matches are unique between the PigEST data and cow genome. Based on the pig-cow alignments, we searched for similarities to 16 other organisms by UCSC available alignments, which resulted in a 87% coverage by the human genome for instance. CONCLUSION: Besides recovering several of the already annotated functional RNA structures, we predicted a large number of high confidence conserved secondary structures in polyadenylated porcine transcripts. Our observations of relatively low expression levels of predicted ncRNA candidates together with the observations of higher relative amount in cDNA libraries from developmental stages are in agreement with the current paradigm of ncRNA roles in higher organisms and supports the idea of polyadenylated ncRNAs. More... »

PAGES

316

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-8-316

DOI

http://dx.doi.org/10.1186/1471-2164-8-316

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046030654

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17845718


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Untranslated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Swine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Division of Genetics and Bioinformatics, IBHV, University of Copenhagen, Gr\u00f8nneg\u00e5rdsvej 3, DK-1870, Frederiksberg, Denmark", 
            "Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seemann", 
        "givenName": "Stefan E", 
        "id": "sg:person.01136732634.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136732634.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome / CRUK Gurdon Institute", 
          "id": "https://www.grid.ac/institutes/grid.450000.1", 
          "name": [
            "The Wellcome Trust/Cancer Research UK Gurdon Institute, CB2 1QN, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilchrist", 
        "givenName": "Michael J", 
        "id": "sg:person.0722241653.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722241653.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry and Structural Biology, University of Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany", 
            "Institute for Theoretical Chemistry and Structural Biology, University of Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Division of Genetics and Bioinformatics, IBHV, University of Copenhagen, Gr\u00f8nneg\u00e5rdsvej 3, DK-1870, Frederiksberg, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorodkin", 
        "givenName": "Jan", 
        "id": "sg:person.01172171354.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172171354.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001718562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.9.2624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003284045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005913886", 
          "https://doi.org/10.1038/nature05874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.b.21086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007388294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.b.21086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007388294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5226606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008334026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)00127-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008587641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011156269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014421246", 
          "https://doi.org/10.1186/1471-2164-8-406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014962641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-4-r45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016174151", 
          "https://doi.org/10.1186/gb-2007-8-4-r45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409169102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016701541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019848491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/9.6.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020481678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2006.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021714681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022353655", 
          "https://doi.org/10.1038/nature02255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022353655", 
          "https://doi.org/10.1038/nature02255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022792016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025511231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1484207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026439699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/ec.00065-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027982867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2007.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028164401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028182204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5650707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028375537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028917438", 
          "https://doi.org/10.1038/nbt1144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028917438", 
          "https://doi.org/10.1038/nbt1144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028917438", 
          "https://doi.org/10.1038/nbt1144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029721777", 
          "https://doi.org/10.1038/nbt808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029721777", 
          "https://doi.org/10.1038/nbt808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030326679", 
          "https://doi.org/10.1038/ng1875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030326679", 
          "https://doi.org/10.1038/ng1875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddl046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030570965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031158446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.b.21021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032318891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00818163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495505", 
          "https://doi.org/10.1007/bf00818163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032799038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032799038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408203102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033633670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.10332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034594169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036093015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2004.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036604557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038073766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039821503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040565153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.5.0955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041894290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1103388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042741349", 
          "https://doi.org/10.1186/1471-2164-8-293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4200206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043481930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044415828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044636723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044722980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045973595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046362248", 
          "https://doi.org/10.1186/1471-2105-2-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046921907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2207206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047030292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.809403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047191638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5255506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047371169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-7188-2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048065340", 
          "https://doi.org/10.1186/1748-7188-2-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048209390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1116800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052671967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-6-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052850956", 
          "https://doi.org/10.1186/1471-2164-6-70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0020033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053214791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dna.2006.25.418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059252095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8091218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652223"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Non-coding RNAs (ncRNAs) are involved in a wide spectrum of regulatory functions. Within recent years, there have been increasing reports of observed polyadenylated ncRNAs and mRNA like ncRNAs in eukaryotes. To investigate this further, we examined the large data set in the Sino-Danish PigEST resource http://pigest.ku.dk which also contains expression information distributed on 97 non-normalized cDNA libraries.\nRESULTS: We constructed a pipeline, EST2ncRNA, to search for known and novel ncRNAs. The pipeline utilises sequence similarity to ncRNA databases (blast), structure similarity to Rfam (RaveNnA) as well as multiple alignments to predict conserved novel putative RNA structures (RNAz). EST2ncRNA was fed with 48,000 contigs and 73,000 singletons available from the PigEST resource. Using the pipeline we identified known RNA structures in 137 contigs and single reads (conreads), and predicted high confidence RNA structures in non-protein coding regions of additional 1,262 conreads. Of these, structures in 270 conreads overlap with existing predictions in human. To sum up, the PigEST resource comprises trans-acting elements (ncRNAs) in 715 contigs and 340 singletons as well as cis-acting elements (inside UTRs) in 311 contigs and 51 singletons, of which 18 conreads contain both predictions of trans- and cis-acting elements. The predicted RNAz candidates were compared with the PigEST expression information and we identify 114 contigs with an RNAz prediction and expression in at least ten of the non-normalised cDNA libraries. We conclude that the contigs with RNAz and known predictions are in general expressed at a much lower level than protein coding transcripts. In addition, we also observe that our ncRNA candidates constitute about one to two percent of the genes expressed in the cDNA libraries. Intriguingly, the cDNA libraries from developmental (brain) tissues contain the highest amount of ncRNA candidates, about two percent. These observations are related to existing knowledge and hypotheses about the role of ncRNAs in higher organisms. Furthermore, about 80% porcine coding transcripts (of 18,600 identified) as well as less than one-third ORF-free transcripts are conserved at least in the closely related bovine genome. Approximately one percent of the coding and 10% of the remaining matches are unique between the PigEST data and cow genome. Based on the pig-cow alignments, we searched for similarities to 16 other organisms by UCSC available alignments, which resulted in a 87% coverage by the human genome for instance.\nCONCLUSION: Besides recovering several of the already annotated functional RNA structures, we predicted a large number of high confidence conserved secondary structures in polyadenylated porcine transcripts. Our observations of relatively low expression levels of predicted ncRNA candidates together with the observations of higher relative amount in cDNA libraries from developmental stages are in agreement with the current paradigm of ncRNA roles in higher organisms and supports the idea of polyadenylated ncRNAs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-8-316", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Detection of RNA structures in porcine EST data and related mammals", 
    "pagination": "316", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db43a5bb565263b1183f2469c2b749cef269302e28897bc31eaeef6b38c1c23f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17845718"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-8-316"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046030654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-8-316", 
      "https://app.dimensions.ai/details/publication/pub.1046030654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-8-316"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-316'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-316'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-316'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-316'


 

This table displays all metadata directly associated to this object as RDF triples.

331 TRIPLES      21 PREDICATES      98 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-8-316 schema:about N025d241bd34f48c6b7bc82ccdc3789ea
2 N06a4da3a88ee4562ac8030ba0f7ff83b
3 N41ac9aa0341245c5bc13ec0aafb12e6b
4 Nb9b1ead7b8054a468f5c38abecafb991
5 Nbf5cb271b6514c76a1d88a55f6a3de2d
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N1aa3feed282e401db19f3141277a08e2
9 schema:citation sg:pub.10.1007/bf00818163
10 sg:pub.10.1038/nature02255
11 sg:pub.10.1038/nature05874
12 sg:pub.10.1038/nbt1144
13 sg:pub.10.1038/nbt808
14 sg:pub.10.1038/ng1875
15 sg:pub.10.1186/1471-2105-2-8
16 sg:pub.10.1186/1471-2164-6-70
17 sg:pub.10.1186/1471-2164-8-293
18 sg:pub.10.1186/1471-2164-8-406
19 sg:pub.10.1186/1748-7188-2-6
20 sg:pub.10.1186/gb-2007-8-4-r45
21 https://doi.org/10.1002/bies.10332
22 https://doi.org/10.1002/jez.b.21021
23 https://doi.org/10.1002/jez.b.21086
24 https://doi.org/10.1016/j.cell.2006.06.009
25 https://doi.org/10.1016/j.cub.2005.08.002
26 https://doi.org/10.1016/j.gde.2007.02.008
27 https://doi.org/10.1016/j.gene.2006.09.028
28 https://doi.org/10.1016/j.ydbio.2004.04.023
29 https://doi.org/10.1016/s0092-8674(04)00127-8
30 https://doi.org/10.1073/pnas.0408203102
31 https://doi.org/10.1073/pnas.0409169102
32 https://doi.org/10.1073/pnas.84.9.2624
33 https://doi.org/10.1089/dna.2006.25.418
34 https://doi.org/10.1093/bioinformatics/btg199
35 https://doi.org/10.1093/bioinformatics/bth925
36 https://doi.org/10.1093/bioinformatics/bti1113
37 https://doi.org/10.1093/bioinformatics/bti279
38 https://doi.org/10.1093/bioinformatics/btk008
39 https://doi.org/10.1093/bioinformatics/btl048
40 https://doi.org/10.1093/bioinformatics/btl257
41 https://doi.org/10.1093/dnares/9.6.209
42 https://doi.org/10.1093/hmg/ddl046
43 https://doi.org/10.1093/nar/22.22.4673
44 https://doi.org/10.1093/nar/25.17.3389
45 https://doi.org/10.1093/nar/25.5.0955
46 https://doi.org/10.1093/nar/gkh818
47 https://doi.org/10.1093/nar/gki025
48 https://doi.org/10.1093/nar/gki081
49 https://doi.org/10.1093/nar/gki089
50 https://doi.org/10.1093/nar/gkj112
51 https://doi.org/10.1093/nar/gkj157
52 https://doi.org/10.1093/nar/gkj469
53 https://doi.org/10.1101/gad.1484207
54 https://doi.org/10.1101/gr.229102
55 https://doi.org/10.1101/gr.4200206
56 https://doi.org/10.1101/gr.5226606
57 https://doi.org/10.1101/gr.5255506
58 https://doi.org/10.1101/gr.5650707
59 https://doi.org/10.1101/gr.809403
60 https://doi.org/10.1126/science.1103388
61 https://doi.org/10.1126/science.1108625
62 https://doi.org/10.1126/science.1112009
63 https://doi.org/10.1126/science.1112014
64 https://doi.org/10.1126/science.1116800
65 https://doi.org/10.1126/science.8091218
66 https://doi.org/10.1128/ec.00065-06
67 https://doi.org/10.1261/rna.2207206
68 https://doi.org/10.1371/journal.pbio.0020247
69 https://doi.org/10.1371/journal.pbio.0050106
70 https://doi.org/10.1371/journal.pcbi.0020033
71 https://doi.org/10.1371/journal.pcbi.0030193
72 https://doi.org/10.1371/journal.pgen.0020029
73 schema:datePublished 2007-12
74 schema:datePublishedReg 2007-12-01
75 schema:description BACKGROUND: Non-coding RNAs (ncRNAs) are involved in a wide spectrum of regulatory functions. Within recent years, there have been increasing reports of observed polyadenylated ncRNAs and mRNA like ncRNAs in eukaryotes. To investigate this further, we examined the large data set in the Sino-Danish PigEST resource http://pigest.ku.dk which also contains expression information distributed on 97 non-normalized cDNA libraries. RESULTS: We constructed a pipeline, EST2ncRNA, to search for known and novel ncRNAs. The pipeline utilises sequence similarity to ncRNA databases (blast), structure similarity to Rfam (RaveNnA) as well as multiple alignments to predict conserved novel putative RNA structures (RNAz). EST2ncRNA was fed with 48,000 contigs and 73,000 singletons available from the PigEST resource. Using the pipeline we identified known RNA structures in 137 contigs and single reads (conreads), and predicted high confidence RNA structures in non-protein coding regions of additional 1,262 conreads. Of these, structures in 270 conreads overlap with existing predictions in human. To sum up, the PigEST resource comprises trans-acting elements (ncRNAs) in 715 contigs and 340 singletons as well as cis-acting elements (inside UTRs) in 311 contigs and 51 singletons, of which 18 conreads contain both predictions of trans- and cis-acting elements. The predicted RNAz candidates were compared with the PigEST expression information and we identify 114 contigs with an RNAz prediction and expression in at least ten of the non-normalised cDNA libraries. We conclude that the contigs with RNAz and known predictions are in general expressed at a much lower level than protein coding transcripts. In addition, we also observe that our ncRNA candidates constitute about one to two percent of the genes expressed in the cDNA libraries. Intriguingly, the cDNA libraries from developmental (brain) tissues contain the highest amount of ncRNA candidates, about two percent. These observations are related to existing knowledge and hypotheses about the role of ncRNAs in higher organisms. Furthermore, about 80% porcine coding transcripts (of 18,600 identified) as well as less than one-third ORF-free transcripts are conserved at least in the closely related bovine genome. Approximately one percent of the coding and 10% of the remaining matches are unique between the PigEST data and cow genome. Based on the pig-cow alignments, we searched for similarities to 16 other organisms by UCSC available alignments, which resulted in a 87% coverage by the human genome for instance. CONCLUSION: Besides recovering several of the already annotated functional RNA structures, we predicted a large number of high confidence conserved secondary structures in polyadenylated porcine transcripts. Our observations of relatively low expression levels of predicted ncRNA candidates together with the observations of higher relative amount in cDNA libraries from developmental stages are in agreement with the current paradigm of ncRNA roles in higher organisms and supports the idea of polyadenylated ncRNAs.
76 schema:genre research_article
77 schema:inLanguage en
78 schema:isAccessibleForFree true
79 schema:isPartOf N4e7ed93921534e7990014f35437b9e1e
80 Nc2df68ca51c9480693e43cef14bbccfd
81 sg:journal.1023790
82 schema:name Detection of RNA structures in porcine EST data and related mammals
83 schema:pagination 316
84 schema:productId N52822dd319b44f4a946c1a0f1d6e2ef5
85 N82f3d17688ed486ab0d3f41bb7a3bbe0
86 N97fe958b94154a9ea8496e1671494871
87 Nd306cdc86d36407ba18206240d235a17
88 Ndcb834745dce4d17acc75ce2a3473f34
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046030654
90 https://doi.org/10.1186/1471-2164-8-316
91 schema:sdDatePublished 2019-04-11T00:14
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N9d00412b147f4947b34c8f6f0f98ce63
94 schema:url http://link.springer.com/10.1186%2F1471-2164-8-316
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N025d241bd34f48c6b7bc82ccdc3789ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name RNA, Untranslated
100 rdf:type schema:DefinedTerm
101 N06a4da3a88ee4562ac8030ba0f7ff83b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Nucleic Acid Conformation
103 rdf:type schema:DefinedTerm
104 N1aa3feed282e401db19f3141277a08e2 rdf:first sg:person.01136732634.43
105 rdf:rest N7c8d6900621d41e6ba4db726e28c637a
106 N41ac9aa0341245c5bc13ec0aafb12e6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Expressed Sequence Tags
108 rdf:type schema:DefinedTerm
109 N4e7ed93921534e7990014f35437b9e1e schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N52822dd319b44f4a946c1a0f1d6e2ef5 schema:name nlm_unique_id
112 schema:value 100965258
113 rdf:type schema:PropertyValue
114 N7c8d6900621d41e6ba4db726e28c637a rdf:first sg:person.0722241653.84
115 rdf:rest Nf4845dd54c7f4c4ba7a5659da75f54ad
116 N82f3d17688ed486ab0d3f41bb7a3bbe0 schema:name dimensions_id
117 schema:value pub.1046030654
118 rdf:type schema:PropertyValue
119 N97fe958b94154a9ea8496e1671494871 schema:name pubmed_id
120 schema:value 17845718
121 rdf:type schema:PropertyValue
122 N9d00412b147f4947b34c8f6f0f98ce63 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nae9172a0224649e3b19cf4ffc093b1b0 rdf:first sg:person.01172171354.74
125 rdf:rest rdf:nil
126 Nb39068d188574645a341d7666699a482 rdf:first sg:person.0664150133.70
127 rdf:rest Nae9172a0224649e3b19cf4ffc093b1b0
128 Nb9b1ead7b8054a468f5c38abecafb991 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Swine
130 rdf:type schema:DefinedTerm
131 Nbf5cb271b6514c76a1d88a55f6a3de2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Animals
133 rdf:type schema:DefinedTerm
134 Nc2df68ca51c9480693e43cef14bbccfd schema:volumeNumber 8
135 rdf:type schema:PublicationVolume
136 Nd306cdc86d36407ba18206240d235a17 schema:name doi
137 schema:value 10.1186/1471-2164-8-316
138 rdf:type schema:PropertyValue
139 Ndcb834745dce4d17acc75ce2a3473f34 schema:name readcube_id
140 schema:value db43a5bb565263b1183f2469c2b749cef269302e28897bc31eaeef6b38c1c23f
141 rdf:type schema:PropertyValue
142 Nf4845dd54c7f4c4ba7a5659da75f54ad rdf:first sg:person.01222322364.52
143 rdf:rest Nb39068d188574645a341d7666699a482
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
148 schema:name Genetics
149 rdf:type schema:DefinedTerm
150 sg:journal.1023790 schema:issn 1471-2164
151 schema:name BMC Genomics
152 rdf:type schema:Periodical
153 sg:person.01136732634.43 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
154 schema:familyName Seemann
155 schema:givenName Stefan E
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136732634.43
157 rdf:type schema:Person
158 sg:person.01172171354.74 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
159 schema:familyName Gorodkin
160 schema:givenName Jan
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172171354.74
162 rdf:type schema:Person
163 sg:person.01222322364.52 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
164 schema:familyName Hofacker
165 schema:givenName Ivo L
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
167 rdf:type schema:Person
168 sg:person.0664150133.70 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
169 schema:familyName Stadler
170 schema:givenName Peter F
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
172 rdf:type schema:Person
173 sg:person.0722241653.84 schema:affiliation https://www.grid.ac/institutes/grid.450000.1
174 schema:familyName Gilchrist
175 schema:givenName Michael J
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722241653.84
177 rdf:type schema:Person
178 sg:pub.10.1007/bf00818163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495505
179 https://doi.org/10.1007/bf00818163
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature02255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022353655
182 https://doi.org/10.1038/nature02255
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature05874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913886
185 https://doi.org/10.1038/nature05874
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nbt1144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028917438
188 https://doi.org/10.1038/nbt1144
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nbt808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029721777
191 https://doi.org/10.1038/nbt808
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ng1875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030326679
194 https://doi.org/10.1038/ng1875
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/1471-2105-2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046362248
197 https://doi.org/10.1186/1471-2105-2-8
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1471-2164-6-70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052850956
200 https://doi.org/10.1186/1471-2164-6-70
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2164-8-293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042741349
203 https://doi.org/10.1186/1471-2164-8-293
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2164-8-406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014421246
206 https://doi.org/10.1186/1471-2164-8-406
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1748-7188-2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048065340
209 https://doi.org/10.1186/1748-7188-2-6
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/gb-2007-8-4-r45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016174151
212 https://doi.org/10.1186/gb-2007-8-4-r45
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/bies.10332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034594169
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/jez.b.21021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032318891
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/jez.b.21086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388294
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.cell.2006.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031158446
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.cub.2005.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032799038
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.gde.2007.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028164401
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.gene.2006.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021714681
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ydbio.2004.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036604557
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0092-8674(04)00127-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008587641
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0408203102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033633670
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.0409169102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016701541
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.84.9.2624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003284045
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1089/dna.2006.25.418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059252095
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/btg199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001718562
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/bth925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044415828
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/bti1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107232
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/bioinformatics/bti279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065418
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/bioinformatics/btk008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620023
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/bioinformatics/btl048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039821503
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/bioinformatics/btl257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040565153
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/dnares/9.6.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020481678
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/hmg/ddl046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030570965
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/nar/25.5.0955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041894290
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/nar/gkh818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019848491
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/nar/gki025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038073766
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/gki081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286749
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/nar/gki089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045973595
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/nar/gkj112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036093015
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/nar/gkj157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011156269
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/nar/gkj469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028182204
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1101/gad.1484207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026439699
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1101/gr.229102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792016
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1101/gr.4200206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043481930
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1101/gr.5226606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008334026
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1101/gr.5255506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047371169
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1101/gr.5650707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028375537
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1101/gr.809403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047191638
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.1108625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046921907
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1126/science.1112009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048209390
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1126/science.1112014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847323
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1126/science.1116800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052671967
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1126/science.8091218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652223
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1128/ec.00065-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027982867
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1261/rna.2207206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047030292
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1371/journal.pbio.0020247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044722980
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1371/journal.pbio.0050106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025511231
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1371/journal.pcbi.0020033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053214791
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1371/journal.pcbi.0030193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014962641
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1371/journal.pgen.0020029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044636723
317 rdf:type schema:CreativeWork
318 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
319 schema:name Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany
320 Institute for Theoretical Chemistry and Structural Biology, University of Vienna, Austria
321 rdf:type schema:Organization
322 https://www.grid.ac/institutes/grid.450000.1 schema:alternateName Wellcome / CRUK Gurdon Institute
323 schema:name The Wellcome Trust/Cancer Research UK Gurdon Institute, CB2 1QN, Cambridge, UK
324 rdf:type schema:Organization
325 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
326 schema:name Division of Genetics and Bioinformatics, IBHV, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg, Denmark
327 rdf:type schema:Organization
328 https://www.grid.ac/institutes/grid.9647.c schema:alternateName Leipzig University
329 schema:name Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany
330 Division of Genetics and Bioinformatics, IBHV, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg, Denmark
331 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...