Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05-23

AUTHORS

Rachel Geddy, Gregory G Brown

ABSTRACT

BackgroundThe pentatricopeptide repeat (PPR) is a degenerate 35 amino acid motif that occurs in multiple tandem copies in members of a recently recognized eukaryotic gene family. Most analyzed eukaryotic genomes contain only a small number of PPR genes, but in plants the family is greatly expanded. The factors that underlie the expansion of this gene family in plants are not as yet understood.ResultsWe show that the location of PPR genes is highly variable in comparisons between orthologous, closely related, and otherwise co-linear chromosomal regions of the Brassica rapa or radish and Arabidopsis thaliana. This observation also pertains to paralogous duplicated segments of the genomes of Arabidopsis thaliana and Brassica rapa. In addition, we show that PPR genes that seem closely linearly aligned in these comparisons are not generally found to be closely related to one another at the nucleotide and amino acid sequence level. We observe a relatively high level of non-synonomous vs synonomous changes among a group tandemly repeated radish PPR genes, suggesting that these, and possibly other PPR genes, are subject to diversifying selection. We also show that a duplicated region of the Arabidopsis genome possesses a relatively high density of PPR genes showing high similarity to restorers of fertility of cytoplasmic male sterile (CMS) systems of petunia, radish and rice. The PPR genes in these regions, together with the restorer genes, are more highly similar to one another, in sequence as well as in structure, than to other PPR genes, even within the same sub-family.ConclusionOur results suggest are consistent with a model in which at least some PPR genes undergo a "birth and death" process that involves transposition to unrelated chromosomal sites. PPR genes hold certain features in common with disease resistance genes (R genes), and their "nomadic" character suggests that their evolutionary expansion in plants may have involved novel molecular processes and selective pressures. More... »

PAGES

130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-8-130

DOI

http://dx.doi.org/10.1186/1471-2164-8-130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043103136

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17521445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brassica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Fragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Raphanus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plant Products Directorate, Plant Biosafety Office, Canadian Food Inspection Agency, 59 Camelot Drive, K1A 0Y9, Ottawa, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.418040.9", 
          "name": [
            "Plant Products Directorate, Plant Biosafety Office, Canadian Food Inspection Agency, 59 Camelot Drive, K1A 0Y9, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geddy", 
        "givenName": "Rachel", 
        "id": "sg:person.0610326047.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610326047.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology, McGill University, H3A 1B1, Montreal, Quebec, Canada", 
          "id": "http://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Biology, McGill University, H3A 1B1, Montreal, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Gregory G", 
        "id": "sg:person.01041003047.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041003047.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035679083", 
          "https://doi.org/10.1038/nature03229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6754-9_6816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048734222", 
          "https://doi.org/10.1007/978-1-4020-6754-9_6816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6754-9_17001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041264963", 
          "https://doi.org/10.1007/978-1-4020-6754-9_17001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-004-1452-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020004264", 
          "https://doi.org/10.1007/s00425-004-1452-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-4-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008705992", 
          "https://doi.org/10.1186/1471-2229-4-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-004-1591-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047033253", 
          "https://doi.org/10.1007/s00122-004-1591-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-006-0008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019901742", 
          "https://doi.org/10.1007/s11103-006-0008-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006388223475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045787620", 
          "https://doi.org/10.1023/a:1006388223475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049375110", 
          "https://doi.org/10.1186/1471-2105-8-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05-23", 
    "datePublishedReg": "2007-05-23", 
    "description": "BackgroundThe pentatricopeptide repeat (PPR) is a degenerate 35 amino acid motif that occurs in multiple tandem copies in members of a recently recognized eukaryotic gene family. Most analyzed eukaryotic genomes contain only a small number of PPR genes, but in plants the family is greatly expanded. The factors that underlie the expansion of this gene family in plants are not as yet understood.ResultsWe show that the location of PPR genes is highly variable in comparisons between orthologous, closely related, and otherwise co-linear chromosomal regions of the Brassica rapa or radish and Arabidopsis thaliana. This observation also pertains to paralogous duplicated segments of the genomes of Arabidopsis thaliana and Brassica rapa. In addition, we show that PPR genes that seem closely linearly aligned in these comparisons are not generally found to be closely related to one another at the nucleotide and amino acid sequence level. We observe a relatively high level of non-synonomous vs synonomous changes among a group tandemly repeated radish PPR genes, suggesting that these, and possibly other PPR genes, are subject to diversifying selection. We also show that a duplicated region of the Arabidopsis genome possesses a relatively high density of PPR genes showing high similarity to restorers of fertility of cytoplasmic male sterile (CMS) systems of petunia, radish and rice. The PPR genes in these regions, together with the restorer genes, are more highly similar to one another, in sequence as well as in structure, than to other PPR genes, even within the same sub-family.ConclusionOur results suggest are consistent with a model in which at least some PPR genes undergo a \"birth and death\" process that involves transposition to unrelated chromosomal sites. PPR genes hold certain features in common with disease resistance genes (R genes), and their \"nomadic\" character suggests that their evolutionary expansion in plants may have involved novel molecular processes and selective pressures.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-8-130", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "PPR genes", 
      "pentatricopeptide repeat", 
      "gene family", 
      "Brassica rapa", 
      "pentatricopeptide repeat protein", 
      "eukaryotic gene family", 
      "cytoplasmic male sterile system", 
      "amino acid sequence level", 
      "disease resistance genes", 
      "restorers of fertility", 
      "male sterile system", 
      "novel molecular processes", 
      "amino acid motifs", 
      "multiple tandem copies", 
      "Arabidopsis genome", 
      "plant genomes", 
      "Arabidopsis thaliana", 
      "eukaryotic genomes", 
      "restorer gene", 
      "repeat proteins", 
      "evolutionary expansion", 
      "sequence level", 
      "chromosomal sites", 
      "acid motif", 
      "selective pressure", 
      "chromosomal regions", 
      "tandem copies", 
      "genome", 
      "high similarity", 
      "molecular processes", 
      "genes", 
      "resistance genes", 
      "plants", 
      "rapa", 
      "sterile system", 
      "family", 
      "Arabidopsis", 
      "thaliana", 
      "petunia", 
      "repeats", 
      "nucleotides", 
      "protein", 
      "motif", 
      "radish", 
      "rice", 
      "high density", 
      "high levels", 
      "copies", 
      "region", 
      "selection", 
      "sequence", 
      "similarity", 
      "members", 
      "small number", 
      "fertility", 
      "sites", 
      "ConclusionOur results", 
      "levels", 
      "expansion", 
      "transposition", 
      "restorer", 
      "location", 
      "process", 
      "death", 
      "character", 
      "segments", 
      "structure", 
      "factors", 
      "addition", 
      "changes", 
      "certain features", 
      "number", 
      "comparison", 
      "ResultsWe", 
      "observations", 
      "density", 
      "features", 
      "results", 
      "system", 
      "group", 
      "birth", 
      "model", 
      "pressure"
    ], 
    "name": "Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection", 
    "pagination": "130", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043103136"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-8-130"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17521445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-8-130", 
      "https://app.dimensions.ai/details/publication/pub.1043103136"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_448.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-8-130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-8-130'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      22 PREDICATES      132 URIs      115 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-8-130 schema:about N2c201182f6fc4725b58cc7a09fc6c91e
2 N33ec7888b4214440b5d358594dcf1830
3 N38e36a5b61594c9eae06b8a4c2be4699
4 N566c77e8766f494096189db8f942919c
5 N700c4463b878499a89f08b4a395c22ae
6 N7340bbe6043945848b2fa52a823cf67c
7 N79b5e69c8705403ea8d5b97efb250316
8 N8a9adb9d3a1b477f897e8b65560fb297
9 Na1104e9be96648d2849a119977ab8e34
10 Nb0131bd8ee444fc48f20e9b2dc9d3517
11 Nb1e2425bd4b44a2baf8516801d99cd8b
12 Nece356d131d14f46bb3e2075cb55710f
13 Nf5ffe666876c41ffb79465ad6c6ac648
14 Nff4a01eb0b364776810d91d8272c0dd6
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author Na178a00cba6f4701a2d9879b436ec40b
18 schema:citation sg:pub.10.1007/978-1-4020-6754-9_17001
19 sg:pub.10.1007/978-1-4020-6754-9_6816
20 sg:pub.10.1007/s00122-004-1591-2
21 sg:pub.10.1007/s00425-004-1452-x
22 sg:pub.10.1007/s11103-006-0008-9
23 sg:pub.10.1023/a:1006388223475
24 sg:pub.10.1038/nature03229
25 sg:pub.10.1186/1471-2105-8-2
26 sg:pub.10.1186/1471-2229-4-10
27 schema:datePublished 2007-05-23
28 schema:datePublishedReg 2007-05-23
29 schema:description BackgroundThe pentatricopeptide repeat (PPR) is a degenerate 35 amino acid motif that occurs in multiple tandem copies in members of a recently recognized eukaryotic gene family. Most analyzed eukaryotic genomes contain only a small number of PPR genes, but in plants the family is greatly expanded. The factors that underlie the expansion of this gene family in plants are not as yet understood.ResultsWe show that the location of PPR genes is highly variable in comparisons between orthologous, closely related, and otherwise co-linear chromosomal regions of the Brassica rapa or radish and Arabidopsis thaliana. This observation also pertains to paralogous duplicated segments of the genomes of Arabidopsis thaliana and Brassica rapa. In addition, we show that PPR genes that seem closely linearly aligned in these comparisons are not generally found to be closely related to one another at the nucleotide and amino acid sequence level. We observe a relatively high level of non-synonomous vs synonomous changes among a group tandemly repeated radish PPR genes, suggesting that these, and possibly other PPR genes, are subject to diversifying selection. We also show that a duplicated region of the Arabidopsis genome possesses a relatively high density of PPR genes showing high similarity to restorers of fertility of cytoplasmic male sterile (CMS) systems of petunia, radish and rice. The PPR genes in these regions, together with the restorer genes, are more highly similar to one another, in sequence as well as in structure, than to other PPR genes, even within the same sub-family.ConclusionOur results suggest are consistent with a model in which at least some PPR genes undergo a "birth and death" process that involves transposition to unrelated chromosomal sites. PPR genes hold certain features in common with disease resistance genes (R genes), and their "nomadic" character suggests that their evolutionary expansion in plants may have involved novel molecular processes and selective pressures.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N7bdbdf69d1ed4a4e9841a07a4d5d1fac
34 Nc4afac1c17534464b15b50ad3b6fffba
35 sg:journal.1023790
36 schema:keywords Arabidopsis
37 Arabidopsis genome
38 Arabidopsis thaliana
39 Brassica rapa
40 ConclusionOur results
41 PPR genes
42 ResultsWe
43 acid motif
44 addition
45 amino acid motifs
46 amino acid sequence level
47 birth
48 certain features
49 changes
50 character
51 chromosomal regions
52 chromosomal sites
53 comparison
54 copies
55 cytoplasmic male sterile system
56 death
57 density
58 disease resistance genes
59 eukaryotic gene family
60 eukaryotic genomes
61 evolutionary expansion
62 expansion
63 factors
64 family
65 features
66 fertility
67 gene family
68 genes
69 genome
70 group
71 high density
72 high levels
73 high similarity
74 levels
75 location
76 male sterile system
77 members
78 model
79 molecular processes
80 motif
81 multiple tandem copies
82 novel molecular processes
83 nucleotides
84 number
85 observations
86 pentatricopeptide repeat
87 pentatricopeptide repeat protein
88 petunia
89 plant genomes
90 plants
91 pressure
92 process
93 protein
94 radish
95 rapa
96 region
97 repeat proteins
98 repeats
99 resistance genes
100 restorer
101 restorer gene
102 restorers of fertility
103 results
104 rice
105 segments
106 selection
107 selective pressure
108 sequence
109 sequence level
110 similarity
111 sites
112 small number
113 sterile system
114 structure
115 system
116 tandem copies
117 thaliana
118 transposition
119 schema:name Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection
120 schema:pagination 130
121 schema:productId N4d17520067e94c35bfd302e5308d625c
122 N5726d4a874484963adf07fbdabd86cb4
123 Nebb2610a1a5a4af7808703296cf058e7
124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043103136
125 https://doi.org/10.1186/1471-2164-8-130
126 schema:sdDatePublished 2022-05-20T07:24
127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
128 schema:sdPublisher N8ed47f138667444482393f6568e50090
129 schema:url https://doi.org/10.1186/1471-2164-8-130
130 sgo:license sg:explorer/license/
131 sgo:sdDataset articles
132 rdf:type schema:ScholarlyArticle
133 N2c201182f6fc4725b58cc7a09fc6c91e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Oligonucleotide Array Sequence Analysis
135 rdf:type schema:DefinedTerm
136 N33ec7888b4214440b5d358594dcf1830 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Plant Proteins
138 rdf:type schema:DefinedTerm
139 N38e36a5b61594c9eae06b8a4c2be4699 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Phylogeny
141 rdf:type schema:DefinedTerm
142 N4d17520067e94c35bfd302e5308d625c schema:name pubmed_id
143 schema:value 17521445
144 rdf:type schema:PropertyValue
145 N566c77e8766f494096189db8f942919c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Selection, Genetic
147 rdf:type schema:DefinedTerm
148 N5726d4a874484963adf07fbdabd86cb4 schema:name dimensions_id
149 schema:value pub.1043103136
150 rdf:type schema:PropertyValue
151 N700c4463b878499a89f08b4a395c22ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Brassica
153 rdf:type schema:DefinedTerm
154 N7340bbe6043945848b2fa52a823cf67c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Arabidopsis
156 rdf:type schema:DefinedTerm
157 N79b5e69c8705403ea8d5b97efb250316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Peptide Fragments
159 rdf:type schema:DefinedTerm
160 N7bdbdf69d1ed4a4e9841a07a4d5d1fac schema:issueNumber 1
161 rdf:type schema:PublicationIssue
162 N8a9adb9d3a1b477f897e8b65560fb297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name DNA, Plant
164 rdf:type schema:DefinedTerm
165 N8ed47f138667444482393f6568e50090 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 Na1104e9be96648d2849a119977ab8e34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Raphanus
169 rdf:type schema:DefinedTerm
170 Na178a00cba6f4701a2d9879b436ec40b rdf:first sg:person.0610326047.41
171 rdf:rest Ncfe7dfdb956244429a60aeafa3922ddc
172 Nb0131bd8ee444fc48f20e9b2dc9d3517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Arabidopsis Proteins
174 rdf:type schema:DefinedTerm
175 Nb1e2425bd4b44a2baf8516801d99cd8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Chromosome Mapping
177 rdf:type schema:DefinedTerm
178 Nc4afac1c17534464b15b50ad3b6fffba schema:volumeNumber 8
179 rdf:type schema:PublicationVolume
180 Ncfe7dfdb956244429a60aeafa3922ddc rdf:first sg:person.01041003047.82
181 rdf:rest rdf:nil
182 Nebb2610a1a5a4af7808703296cf058e7 schema:name doi
183 schema:value 10.1186/1471-2164-8-130
184 rdf:type schema:PropertyValue
185 Nece356d131d14f46bb3e2075cb55710f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Genome, Plant
187 rdf:type schema:DefinedTerm
188 Nf5ffe666876c41ffb79465ad6c6ac648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Chromosomes, Plant
190 rdf:type schema:DefinedTerm
191 Nff4a01eb0b364776810d91d8272c0dd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Genetic Variation
193 rdf:type schema:DefinedTerm
194 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
195 schema:name Biological Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
198 schema:name Genetics
199 rdf:type schema:DefinedTerm
200 sg:journal.1023790 schema:issn 1471-2164
201 schema:name BMC Genomics
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.01041003047.82 schema:affiliation grid-institutes:grid.14709.3b
205 schema:familyName Brown
206 schema:givenName Gregory G
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041003047.82
208 rdf:type schema:Person
209 sg:person.0610326047.41 schema:affiliation grid-institutes:grid.418040.9
210 schema:familyName Geddy
211 schema:givenName Rachel
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610326047.41
213 rdf:type schema:Person
214 sg:pub.10.1007/978-1-4020-6754-9_17001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041264963
215 https://doi.org/10.1007/978-1-4020-6754-9_17001
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/978-1-4020-6754-9_6816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048734222
218 https://doi.org/10.1007/978-1-4020-6754-9_6816
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s00122-004-1591-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047033253
221 https://doi.org/10.1007/s00122-004-1591-2
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00425-004-1452-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020004264
224 https://doi.org/10.1007/s00425-004-1452-x
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s11103-006-0008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019901742
227 https://doi.org/10.1007/s11103-006-0008-9
228 rdf:type schema:CreativeWork
229 sg:pub.10.1023/a:1006388223475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045787620
230 https://doi.org/10.1023/a:1006388223475
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nature03229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035679083
233 https://doi.org/10.1038/nature03229
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2105-8-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049375110
236 https://doi.org/10.1186/1471-2105-8-2
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1471-2229-4-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008705992
239 https://doi.org/10.1186/1471-2229-4-10
240 rdf:type schema:CreativeWork
241 grid-institutes:grid.14709.3b schema:alternateName Department of Biology, McGill University, H3A 1B1, Montreal, Quebec, Canada
242 schema:name Department of Biology, McGill University, H3A 1B1, Montreal, Quebec, Canada
243 rdf:type schema:Organization
244 grid-institutes:grid.418040.9 schema:alternateName Plant Products Directorate, Plant Biosafety Office, Canadian Food Inspection Agency, 59 Camelot Drive, K1A 0Y9, Ottawa, Ontario, Canada
245 schema:name Plant Products Directorate, Plant Biosafety Office, Canadian Food Inspection Agency, 59 Camelot Drive, K1A 0Y9, Ottawa, Ontario, Canada
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...