Unsupervised clustering of gene expression data points at hypoxia as possible trigger for metabolic syndrome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12-19

AUTHORS

Andrey Ptitsyn, Matthew Hulver, William Cefalu, David York, Steven R Smith

ABSTRACT

BackgroundClassification of large volumes of data produced in a microarray experiment allows for the extraction of important clues as to the nature of a disease.ResultsUsing multi-dimensional unsupervised FOREL (FORmal ELement) algorithm we have re-analyzed three public datasets of skeletal muscle gene expression in connection with insulin resistance and type 2 diabetes (DM2). Our analysis revealed the major line of variation between expression profiles of normal, insulin resistant, and diabetic skeletal muscle. A cluster of most "metabolically sound" samples occupied one end of this line. The distance along this line coincided with the classic markers of diabetes risk, namely obesity and insulin resistance, but did not follow the accepted clinical diagnosis of DM2 as defined by the presence or absence of hyperglycemia. Genes implicated in this expression pattern are those controlling skeletal muscle fiber type and glycolytic metabolism. Additionally myoglobin and hemoglobin were upregulated and ribosomal genes deregulated in insulin resistant patients.ConclusionOur findings are concordant with the changes seen in skeletal muscle with altitude hypoxia. This suggests that hypoxia and shift to glycolytic metabolism may also drive insulin resistance. More... »

PAGES

318

References to SciGraph publications

  • 2003-07. PGC-1α at the crossroads of type 2 diabetes in NATURE GENETICS
  • 2001-02. Functional annotation of a full-length mouse cDNA collection in NATURE
  • 1999-01. Fatty acids, lipotoxicity and insulin secretion in DIABETOLOGIA
  • 2000-11-01. Lipotoxic diseases of nonadipose tissues in obesity in INTERNATIONAL JOURNAL OF OBESITY
  • 2004-05. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation in NATURE
  • 1999. Vascular Growth in Hypoxic Skeletal Muscle in HYPOXIA
  • 2002-05. Emerging paradigms for understanding fatness and diabetes risk in CURRENT DIABETES REPORTS
  • 2002. Oxygen Dependence of Expression of Cytochrome C and Cytochrome C Oxdaso Genes in S. Cerevisiae in OXYGEN SENSING
  • 2003-06-24. Information Technology for the Morphological Analysis of the Lymphoid Cell Nuclei in IMAGE ANALYSIS
  • 2003-06-15. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes in NATURE GENETICS
  • 2003-09-11. Identifying biological themes within lists of genes with EASE in GENOME BIOLOGY
  • 2004-03. caGEDA: a web application for the integrated analysis of global gene expression patterns in cancer in APPLIED BIOINFORMATICS
  • 2004-10-03. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive in NATURE CELL BIOLOGY
  • 2003-10-25. MAP kinases and mTOR mediate insulin-induced phosphorylation of Insulin Receptor Substrate-1 on serine residues 307, 612 and 632 in DIABETOLOGIA
  • 2003-07-25. Performing at extreme altitude: muscle cellular and subcellular adaptations in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-7-318

    DOI

    http://dx.doi.org/10.1186/1471-2164-7-318

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040529915

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17178004


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Insulin Resistance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Syndrome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle, Skeletal", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Microbiology, Immunology and Pathology, Colorado State University, 80523, Fort Collins, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.47894.36", 
              "name": [
                "Department of Microbiology, Immunology and Pathology, Colorado State University, 80523, Fort Collins, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ptitsyn", 
            "givenName": "Andrey", 
            "id": "sg:person.01135434143.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135434143.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Polytechnic Institute and State University, Department of Human Nutrition, Foods and Exercise Corporate Research Center, 24061, Blacksburg, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Virginia Polytechnic Institute and State University, Department of Human Nutrition, Foods and Exercise Corporate Research Center, 24061, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hulver", 
            "givenName": "Matthew", 
            "id": "sg:person.014520546447.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520546447.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennington Biomedical Research Center, 6400 Perkins Rd., 70808, Baton Rouge, LA, USA", 
              "id": "http://www.grid.ac/institutes/grid.250514.7", 
              "name": [
                "Pennington Biomedical Research Center, 6400 Perkins Rd., 70808, Baton Rouge, LA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cefalu", 
            "givenName": "William", 
            "id": "sg:person.01255712476.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255712476.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Advanced Nutrition, Utah State University, 4715 Old Main Hill, 84322, Logan, UT, USA", 
              "id": "http://www.grid.ac/institutes/grid.53857.3c", 
              "name": [
                "Center for Advanced Nutrition, Utah State University, 4715 Old Main Hill, 84322, Logan, UT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "York", 
            "givenName": "David", 
            "id": "sg:person.01337704452.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337704452.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennington Biomedical Research Center, 6400 Perkins Rd., 70808, Baton Rouge, LA, USA", 
              "id": "http://www.grid.ac/institutes/grid.250514.7", 
              "name": [
                "Pennington Biomedical Research Center, 6400 Perkins Rd., 70808, Baton Rouge, LA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Steven R", 
            "id": "sg:person.011256250534.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256250534.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature02520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017921869", 
              "https://doi.org/10.1038/nature02520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-4711-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014620435", 
              "https://doi.org/10.1007/978-1-4615-4711-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-003-1223-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020916491", 
              "https://doi.org/10.1007/s00125-003-1223-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11892-002-0087-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040809452", 
              "https://doi.org/10.1007/s11892-002-0087-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010840444", 
              "https://doi.org/10.1038/ncb1183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-46825-5_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024424112", 
              "https://doi.org/10.1007/0-306-46825-5_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001250051130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008206265", 
              "https://doi.org/10.1007/s001250051130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0703-244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030830391", 
              "https://doi.org/10.1038/ng0703-244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00822942-200403010-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041653505", 
              "https://doi.org/10.2165/00822942-200403010-00007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.ijo.0801498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046499615", 
              "https://doi.org/10.1038/sj.ijo.0801498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-10-r70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001293245", 
              "https://doi.org/10.1186/gb-2003-4-10-r70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35055500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050567122", 
              "https://doi.org/10.1038/35055500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45103-x_72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003740095", 
              "https://doi.org/10.1007/3-540-45103-x_72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-003-0872-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021235782", 
              "https://doi.org/10.1007/s00421-003-0872-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014377811", 
              "https://doi.org/10.1038/ng1180"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-12-19", 
        "datePublishedReg": "2006-12-19", 
        "description": "BackgroundClassification of large volumes of data produced in a microarray experiment allows for the extraction of important clues as to the nature of a disease.ResultsUsing multi-dimensional unsupervised FOREL (FORmal ELement) algorithm we have re-analyzed three public datasets of skeletal muscle gene expression in connection with insulin resistance and type 2 diabetes (DM2). Our analysis revealed the major line of variation between expression profiles of normal, insulin resistant, and diabetic skeletal muscle. A cluster of most \"metabolically sound\" samples occupied one end of this line. The distance along this line coincided with the classic markers of diabetes risk, namely obesity and insulin resistance, but did not follow the accepted clinical diagnosis of DM2 as defined by the presence or absence of hyperglycemia. Genes implicated in this expression pattern are those controlling skeletal muscle fiber type and glycolytic metabolism. Additionally myoglobin and hemoglobin were upregulated and ribosomal genes deregulated in insulin resistant patients.ConclusionOur findings are concordant with the changes seen in skeletal muscle with altitude hypoxia. This suggests that hypoxia and shift to glycolytic metabolism may also drive insulin resistance.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-7-318", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8768260", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2375906", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439036", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "insulin resistance", 
          "skeletal muscle", 
          "absence of hyperglycemia", 
          "insulin-resistant patients", 
          "glycolytic metabolism", 
          "type 2 diabetes", 
          "diabetic skeletal muscle", 
          "skeletal muscle fiber types", 
          "resistant patients", 
          "metabolic syndrome", 
          "muscle fiber types", 
          "diabetes risk", 
          "skeletal muscle gene expression", 
          "ConclusionOur findings", 
          "clinical diagnosis", 
          "altitude hypoxia", 
          "classic markers", 
          "hypoxia", 
          "muscle gene expression", 
          "gene expression data points", 
          "possible triggers", 
          "muscle", 
          "expression profiles", 
          "fiber types", 
          "metabolism", 
          "expression patterns", 
          "gene expression", 
          "hyperglycemia", 
          "obesity", 
          "patients", 
          "diabetes", 
          "syndrome", 
          "insulin", 
          "important clues", 
          "disease", 
          "diagnosis", 
          "hemoglobin", 
          "risk", 
          "markers", 
          "genes", 
          "resistance", 
          "DM2", 
          "expression", 
          "findings", 
          "lines", 
          "unsupervised clustering", 
          "triggers", 
          "absence", 
          "clues", 
          "volume", 
          "profile", 
          "presence", 
          "changes", 
          "patterns", 
          "samples", 
          "data", 
          "myoglobin", 
          "large volumes", 
          "types", 
          "end", 
          "analysis", 
          "microarray experiments", 
          "major lines", 
          "data points", 
          "point", 
          "ribosomal genes", 
          "extraction", 
          "variation", 
          "connection", 
          "clusters", 
          "nature", 
          "clustering", 
          "experiments", 
          "public datasets", 
          "distance", 
          "dataset", 
          "algorithm"
        ], 
        "name": "Unsupervised clustering of gene expression data points at hypoxia as possible trigger for metabolic syndrome", 
        "pagination": "318", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040529915"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-7-318"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17178004"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-7-318", 
          "https://app.dimensions.ai/details/publication/pub.1040529915"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_408.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-7-318"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-318'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-318'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-318'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-318'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      21 PREDICATES      123 URIs      100 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-7-318 schema:about N6c2f4d2f56e14c5cb5a36ed7b84c8a26
    2 N6efa73c5c4e4441f9d2cbde52644d1e1
    3 N709ce16f841540dd8e02e3c80ca7f887
    4 Nc158c95a04d24366badfce04ab7ab581
    5 Ncff2c73005d449a3859a80a6e6364a18
    6 Nf22ef433561b49d59bd6313d3d2c2f41
    7 anzsrc-for:11
    8 anzsrc-for:1103
    9 schema:author N12cfb7e9503643898a140e8cc7f6c640
    10 schema:citation sg:pub.10.1007/0-306-46825-5_19
    11 sg:pub.10.1007/3-540-45103-x_72
    12 sg:pub.10.1007/978-1-4615-4711-2_21
    13 sg:pub.10.1007/s00125-003-1223-4
    14 sg:pub.10.1007/s001250051130
    15 sg:pub.10.1007/s00421-003-0872-9
    16 sg:pub.10.1007/s11892-002-0087-1
    17 sg:pub.10.1038/35055500
    18 sg:pub.10.1038/nature02520
    19 sg:pub.10.1038/ncb1183
    20 sg:pub.10.1038/ng0703-244
    21 sg:pub.10.1038/ng1180
    22 sg:pub.10.1038/sj.ijo.0801498
    23 sg:pub.10.1186/gb-2003-4-10-r70
    24 sg:pub.10.2165/00822942-200403010-00007
    25 schema:datePublished 2006-12-19
    26 schema:datePublishedReg 2006-12-19
    27 schema:description BackgroundClassification of large volumes of data produced in a microarray experiment allows for the extraction of important clues as to the nature of a disease.ResultsUsing multi-dimensional unsupervised FOREL (FORmal ELement) algorithm we have re-analyzed three public datasets of skeletal muscle gene expression in connection with insulin resistance and type 2 diabetes (DM2). Our analysis revealed the major line of variation between expression profiles of normal, insulin resistant, and diabetic skeletal muscle. A cluster of most "metabolically sound" samples occupied one end of this line. The distance along this line coincided with the classic markers of diabetes risk, namely obesity and insulin resistance, but did not follow the accepted clinical diagnosis of DM2 as defined by the presence or absence of hyperglycemia. Genes implicated in this expression pattern are those controlling skeletal muscle fiber type and glycolytic metabolism. Additionally myoglobin and hemoglobin were upregulated and ribosomal genes deregulated in insulin resistant patients.ConclusionOur findings are concordant with the changes seen in skeletal muscle with altitude hypoxia. This suggests that hypoxia and shift to glycolytic metabolism may also drive insulin resistance.
    28 schema:genre article
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N0cb76c55e8b048efbb5123e6b5b4ac82
    31 N7909d18ea4ab474281dcb4da9c410b0f
    32 sg:journal.1023790
    33 schema:keywords ConclusionOur findings
    34 DM2
    35 absence
    36 absence of hyperglycemia
    37 algorithm
    38 altitude hypoxia
    39 analysis
    40 changes
    41 classic markers
    42 clinical diagnosis
    43 clues
    44 clustering
    45 clusters
    46 connection
    47 data
    48 data points
    49 dataset
    50 diabetes
    51 diabetes risk
    52 diabetic skeletal muscle
    53 diagnosis
    54 disease
    55 distance
    56 end
    57 experiments
    58 expression
    59 expression patterns
    60 expression profiles
    61 extraction
    62 fiber types
    63 findings
    64 gene expression
    65 gene expression data points
    66 genes
    67 glycolytic metabolism
    68 hemoglobin
    69 hyperglycemia
    70 hypoxia
    71 important clues
    72 insulin
    73 insulin resistance
    74 insulin-resistant patients
    75 large volumes
    76 lines
    77 major lines
    78 markers
    79 metabolic syndrome
    80 metabolism
    81 microarray experiments
    82 muscle
    83 muscle fiber types
    84 muscle gene expression
    85 myoglobin
    86 nature
    87 obesity
    88 patients
    89 patterns
    90 point
    91 possible triggers
    92 presence
    93 profile
    94 public datasets
    95 resistance
    96 resistant patients
    97 ribosomal genes
    98 risk
    99 samples
    100 skeletal muscle
    101 skeletal muscle fiber types
    102 skeletal muscle gene expression
    103 syndrome
    104 triggers
    105 type 2 diabetes
    106 types
    107 unsupervised clustering
    108 variation
    109 volume
    110 schema:name Unsupervised clustering of gene expression data points at hypoxia as possible trigger for metabolic syndrome
    111 schema:pagination 318
    112 schema:productId N544677c5fe474de78903103017883da1
    113 N832bc32e86e2436bab9ffbb6613da501
    114 Na7e9016547c94200bc746ddc420a4d33
    115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040529915
    116 https://doi.org/10.1186/1471-2164-7-318
    117 schema:sdDatePublished 2022-12-01T06:25
    118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    119 schema:sdPublisher N76ada57f9ccb44a8941edd8810145d8f
    120 schema:url https://doi.org/10.1186/1471-2164-7-318
    121 sgo:license sg:explorer/license/
    122 sgo:sdDataset articles
    123 rdf:type schema:ScholarlyArticle
    124 N0733f869ac66461faf0873f95a226eb3 rdf:first sg:person.01255712476.09
    125 rdf:rest N23898fc84bfb495da244dc4cca34696c
    126 N0cb76c55e8b048efbb5123e6b5b4ac82 schema:issueNumber 1
    127 rdf:type schema:PublicationIssue
    128 N12cfb7e9503643898a140e8cc7f6c640 rdf:first sg:person.01135434143.40
    129 rdf:rest Nbab780053d4b42d9aaa6e4869cb1e8e9
    130 N23898fc84bfb495da244dc4cca34696c rdf:first sg:person.01337704452.60
    131 rdf:rest N52b17720a0d54adc881d5cba28a88a8d
    132 N52b17720a0d54adc881d5cba28a88a8d rdf:first sg:person.011256250534.28
    133 rdf:rest rdf:nil
    134 N544677c5fe474de78903103017883da1 schema:name doi
    135 schema:value 10.1186/1471-2164-7-318
    136 rdf:type schema:PropertyValue
    137 N6c2f4d2f56e14c5cb5a36ed7b84c8a26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Muscle, Skeletal
    139 rdf:type schema:DefinedTerm
    140 N6efa73c5c4e4441f9d2cbde52644d1e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Insulin Resistance
    142 rdf:type schema:DefinedTerm
    143 N709ce16f841540dd8e02e3c80ca7f887 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Metabolic Syndrome
    145 rdf:type schema:DefinedTerm
    146 N76ada57f9ccb44a8941edd8810145d8f schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 N7909d18ea4ab474281dcb4da9c410b0f schema:volumeNumber 7
    149 rdf:type schema:PublicationVolume
    150 N832bc32e86e2436bab9ffbb6613da501 schema:name pubmed_id
    151 schema:value 17178004
    152 rdf:type schema:PropertyValue
    153 Na7e9016547c94200bc746ddc420a4d33 schema:name dimensions_id
    154 schema:value pub.1040529915
    155 rdf:type schema:PropertyValue
    156 Nbab780053d4b42d9aaa6e4869cb1e8e9 rdf:first sg:person.014520546447.71
    157 rdf:rest N0733f869ac66461faf0873f95a226eb3
    158 Nc158c95a04d24366badfce04ab7ab581 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Cluster Analysis
    160 rdf:type schema:DefinedTerm
    161 Ncff2c73005d449a3859a80a6e6364a18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Gene Expression Profiling
    163 rdf:type schema:DefinedTerm
    164 Nf22ef433561b49d59bd6313d3d2c2f41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Humans
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Medical and Health Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Clinical Sciences
    172 rdf:type schema:DefinedTerm
    173 sg:grant.2375906 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-7-318
    174 rdf:type schema:MonetaryGrant
    175 sg:grant.2439036 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-7-318
    176 rdf:type schema:MonetaryGrant
    177 sg:grant.8768260 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-7-318
    178 rdf:type schema:MonetaryGrant
    179 sg:journal.1023790 schema:issn 1471-2164
    180 schema:name BMC Genomics
    181 schema:publisher Springer Nature
    182 rdf:type schema:Periodical
    183 sg:person.011256250534.28 schema:affiliation grid-institutes:grid.250514.7
    184 schema:familyName Smith
    185 schema:givenName Steven R
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256250534.28
    187 rdf:type schema:Person
    188 sg:person.01135434143.40 schema:affiliation grid-institutes:grid.47894.36
    189 schema:familyName Ptitsyn
    190 schema:givenName Andrey
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135434143.40
    192 rdf:type schema:Person
    193 sg:person.01255712476.09 schema:affiliation grid-institutes:grid.250514.7
    194 schema:familyName Cefalu
    195 schema:givenName William
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255712476.09
    197 rdf:type schema:Person
    198 sg:person.01337704452.60 schema:affiliation grid-institutes:grid.53857.3c
    199 schema:familyName York
    200 schema:givenName David
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337704452.60
    202 rdf:type schema:Person
    203 sg:person.014520546447.71 schema:affiliation grid-institutes:grid.438526.e
    204 schema:familyName Hulver
    205 schema:givenName Matthew
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520546447.71
    207 rdf:type schema:Person
    208 sg:pub.10.1007/0-306-46825-5_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024424112
    209 https://doi.org/10.1007/0-306-46825-5_19
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/3-540-45103-x_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003740095
    212 https://doi.org/10.1007/3-540-45103-x_72
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/978-1-4615-4711-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014620435
    215 https://doi.org/10.1007/978-1-4615-4711-2_21
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00125-003-1223-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020916491
    218 https://doi.org/10.1007/s00125-003-1223-4
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s001250051130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008206265
    221 https://doi.org/10.1007/s001250051130
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00421-003-0872-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021235782
    224 https://doi.org/10.1007/s00421-003-0872-9
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s11892-002-0087-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040809452
    227 https://doi.org/10.1007/s11892-002-0087-1
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/35055500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050567122
    230 https://doi.org/10.1038/35055500
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature02520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017921869
    233 https://doi.org/10.1038/nature02520
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/ncb1183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010840444
    236 https://doi.org/10.1038/ncb1183
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ng0703-244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030830391
    239 https://doi.org/10.1038/ng0703-244
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ng1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377811
    242 https://doi.org/10.1038/ng1180
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/sj.ijo.0801498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046499615
    245 https://doi.org/10.1038/sj.ijo.0801498
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/gb-2003-4-10-r70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293245
    248 https://doi.org/10.1186/gb-2003-4-10-r70
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.2165/00822942-200403010-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041653505
    251 https://doi.org/10.2165/00822942-200403010-00007
    252 rdf:type schema:CreativeWork
    253 grid-institutes:grid.250514.7 schema:alternateName Pennington Biomedical Research Center, 6400 Perkins Rd., 70808, Baton Rouge, LA, USA
    254 schema:name Pennington Biomedical Research Center, 6400 Perkins Rd., 70808, Baton Rouge, LA, USA
    255 rdf:type schema:Organization
    256 grid-institutes:grid.438526.e schema:alternateName Virginia Polytechnic Institute and State University, Department of Human Nutrition, Foods and Exercise Corporate Research Center, 24061, Blacksburg, VA, USA
    257 schema:name Virginia Polytechnic Institute and State University, Department of Human Nutrition, Foods and Exercise Corporate Research Center, 24061, Blacksburg, VA, USA
    258 rdf:type schema:Organization
    259 grid-institutes:grid.47894.36 schema:alternateName Department of Microbiology, Immunology and Pathology, Colorado State University, 80523, Fort Collins, CO, USA
    260 schema:name Department of Microbiology, Immunology and Pathology, Colorado State University, 80523, Fort Collins, CO, USA
    261 rdf:type schema:Organization
    262 grid-institutes:grid.53857.3c schema:alternateName Center for Advanced Nutrition, Utah State University, 4715 Old Main Hill, 84322, Logan, UT, USA
    263 schema:name Center for Advanced Nutrition, Utah State University, 4715 Old Main Hill, 84322, Logan, UT, USA
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...