Assessing the number of ancestral alternatively spliced exons in the human genome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Rotem Sorek, Gideon Dror, Ron Shamir

ABSTRACT

BACKGROUND: It is estimated that between 35% and 74% of all human genes undergo alternative splicing. However, as a gene that undergoes alternative splicing can have between one and dozens of alternative exons, the number of alternatively spliced genes by itself is not informative enough. An additional parameter, which was not addressed so far, is therefore the number of human exons that undergo alternative splicing. We have previously described an accurate machine-learning method allowing the detection of conserved alternatively spliced exons without using ESTs, which relies on specific features of the exon and its genomic vicinity that distinguish alternatively spliced exons from constitutive ones. RESULTS: In this study we use the above-described approach to calculate that 7.2% (+/- 1.1%) of all human exons that are conserved in mouse are alternatively spliced in both species. CONCLUSION: This number is the first estimation for the extent of ancestral alternatively spliced exons in the human genome. More... »

PAGES

273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-7-273

DOI

http://dx.doi.org/10.1186/1471-2164-7-273

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003050860

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17062157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Human Genetics, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel", 
            "Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 84-171, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorek", 
        "givenName": "Rotem", 
        "id": "sg:person.0650150106.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650150106.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academic College of Tel Aviv-Yafo", 
          "id": "https://www.grid.ac/institutes/grid.430432.2", 
          "name": [
            "The Academic College of Tel-Aviv-Yaffo, 64044, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dror", 
        "givenName": "Gideon", 
        "id": "sg:person.01034577524.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034577524.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, 69073, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shamir", 
        "givenName": "Ron", 
        "id": "sg:person.01350536106.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350536106.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002384601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009574243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013968646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.13.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014048616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(00)01581-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014937581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2003.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015732168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.12.1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018310168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2572604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019131562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.764102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024713730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026550951", 
          "https://doi.org/10.1038/ng1159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026550951", 
          "https://doi.org/10.1038/ng1159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032644844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1208803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038134998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1082588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039854529", 
          "https://doi.org/10.1038/nature01262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039854529", 
          "https://doi.org/10.1038/nature01262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046921907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2004.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050418456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2094104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050487471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409742102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052450389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506139102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052915989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506139102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052915989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076803173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812704856_0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096052444"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: It is estimated that between 35% and 74% of all human genes undergo alternative splicing. However, as a gene that undergoes alternative splicing can have between one and dozens of alternative exons, the number of alternatively spliced genes by itself is not informative enough. An additional parameter, which was not addressed so far, is therefore the number of human exons that undergo alternative splicing. We have previously described an accurate machine-learning method allowing the detection of conserved alternatively spliced exons without using ESTs, which relies on specific features of the exon and its genomic vicinity that distinguish alternatively spliced exons from constitutive ones.\nRESULTS: In this study we use the above-described approach to calculate that 7.2% (+/- 1.1%) of all human exons that are conserved in mouse are alternatively spliced in both species.\nCONCLUSION: This number is the first estimation for the extent of ancestral alternatively spliced exons in the human genome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-7-273", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Assessing the number of ancestral alternatively spliced exons in the human genome", 
    "pagination": "273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e884c1bc3693abed482c3b197ddbb3cfc7c95513bfcd91d07cf4892defbaaa2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17062157"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-7-273"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003050860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-7-273", 
      "https://app.dimensions.ai/details/publication/pub.1003050860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-7-273"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-273'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-273'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-273'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-273'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      63 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-7-273 schema:about N24099407882749f1bc105742e885080c
2 N361856cc16b7489d9c225211af2e03a3
3 N81d9c1b6b5584989b20be9a6d5584a63
4 N8bdead8da68e4f25a5a27610a18d1eb1
5 N9660094cd67d413e957a63d014efa228
6 Na102978898104480ba2e579ee928cf12
7 Na267b03aea88461cae5b3d97e05e9e62
8 Nc09a2a724a3e4f059b261b7442e5950f
9 Nc9fe8a16af8d4412a8947d97cfad81cb
10 Nddcc7cbeaa8845b88474603864afb111
11 Necc24da5380a4f73878b93cb8d889b9d
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N2915b323ccd641f5bfbc7ff5c092d0a1
15 schema:citation sg:pub.10.1038/35057062
16 sg:pub.10.1038/nature01262
17 sg:pub.10.1038/ng1159
18 https://app.dimensions.ai/details/publication/pub.1076803173
19 https://doi.org/10.1016/j.tig.2003.12.004
20 https://doi.org/10.1016/j.tig.2004.12.004
21 https://doi.org/10.1016/s0014-5793(00)01581-7
22 https://doi.org/10.1073/pnas.0409742102
23 https://doi.org/10.1073/pnas.0506139102
24 https://doi.org/10.1093/bioinformatics/bti132
25 https://doi.org/10.1093/hmg/ddg137
26 https://doi.org/10.1093/nar/29.13.2850
27 https://doi.org/10.1101/gr.1208803
28 https://doi.org/10.1101/gr.2094104
29 https://doi.org/10.1101/gr.2572604
30 https://doi.org/10.1101/gr.764102
31 https://doi.org/10.1101/gr.9.12.1288
32 https://doi.org/10.1126/science.1082588
33 https://doi.org/10.1126/science.1090100
34 https://doi.org/10.1126/science.1108625
35 https://doi.org/10.1142/9789812704856_0007
36 https://doi.org/10.1145/974614.974638
37 https://doi.org/10.1371/journal.pcbi.0010015
38 schema:datePublished 2006-12
39 schema:datePublishedReg 2006-12-01
40 schema:description BACKGROUND: It is estimated that between 35% and 74% of all human genes undergo alternative splicing. However, as a gene that undergoes alternative splicing can have between one and dozens of alternative exons, the number of alternatively spliced genes by itself is not informative enough. An additional parameter, which was not addressed so far, is therefore the number of human exons that undergo alternative splicing. We have previously described an accurate machine-learning method allowing the detection of conserved alternatively spliced exons without using ESTs, which relies on specific features of the exon and its genomic vicinity that distinguish alternatively spliced exons from constitutive ones. RESULTS: In this study we use the above-described approach to calculate that 7.2% (+/- 1.1%) of all human exons that are conserved in mouse are alternatively spliced in both species. CONCLUSION: This number is the first estimation for the extent of ancestral alternatively spliced exons in the human genome.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N645aa4edc8294d9ab921e11f047c06e7
45 Na3eb0213648b43999292d0c47124cc64
46 sg:journal.1023790
47 schema:name Assessing the number of ancestral alternatively spliced exons in the human genome
48 schema:pagination 273
49 schema:productId N2c751c0927284530916da8cf5afaae52
50 N4757360e0b764a0f89daa17401b26f57
51 N4e0b2390019c41328c81453564d02c24
52 N6c33a25d0d8249a3b1daf669ca00c68d
53 Na67a1aca443649b5b46bef03b329870d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003050860
55 https://doi.org/10.1186/1471-2164-7-273
56 schema:sdDatePublished 2019-04-10T14:58
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N997be168f5a541d2a5ad775caf27ffae
59 schema:url http://link.springer.com/10.1186%2F1471-2164-7-273
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N1ab05dd467e74102906a21761a07c484 rdf:first sg:person.01350536106.52
64 rdf:rest rdf:nil
65 N24099407882749f1bc105742e885080c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Mice
67 rdf:type schema:DefinedTerm
68 N2915b323ccd641f5bfbc7ff5c092d0a1 rdf:first sg:person.0650150106.25
69 rdf:rest Neb518d986c5a4c3a961bd96c56673222
70 N2c751c0927284530916da8cf5afaae52 schema:name pubmed_id
71 schema:value 17062157
72 rdf:type schema:PropertyValue
73 N361856cc16b7489d9c225211af2e03a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N4757360e0b764a0f89daa17401b26f57 schema:name doi
77 schema:value 10.1186/1471-2164-7-273
78 rdf:type schema:PropertyValue
79 N4e0b2390019c41328c81453564d02c24 schema:name nlm_unique_id
80 schema:value 100965258
81 rdf:type schema:PropertyValue
82 N645aa4edc8294d9ab921e11f047c06e7 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N6c33a25d0d8249a3b1daf669ca00c68d schema:name dimensions_id
85 schema:value pub.1003050860
86 rdf:type schema:PropertyValue
87 N81d9c1b6b5584989b20be9a6d5584a63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Base Sequence
89 rdf:type schema:DefinedTerm
90 N8bdead8da68e4f25a5a27610a18d1eb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Artificial Intelligence
92 rdf:type schema:DefinedTerm
93 N9660094cd67d413e957a63d014efa228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genome
95 rdf:type schema:DefinedTerm
96 N997be168f5a541d2a5ad775caf27ffae schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Na102978898104480ba2e579ee928cf12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Algorithms
100 rdf:type schema:DefinedTerm
101 Na267b03aea88461cae5b3d97e05e9e62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Exons
103 rdf:type schema:DefinedTerm
104 Na3eb0213648b43999292d0c47124cc64 schema:volumeNumber 7
105 rdf:type schema:PublicationVolume
106 Na67a1aca443649b5b46bef03b329870d schema:name readcube_id
107 schema:value 0e884c1bc3693abed482c3b197ddbb3cfc7c95513bfcd91d07cf4892defbaaa2
108 rdf:type schema:PropertyValue
109 Nc09a2a724a3e4f059b261b7442e5950f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Alternative Splicing
111 rdf:type schema:DefinedTerm
112 Nc9fe8a16af8d4412a8947d97cfad81cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Sequence Alignment
114 rdf:type schema:DefinedTerm
115 Nddcc7cbeaa8845b88474603864afb111 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Animals
117 rdf:type schema:DefinedTerm
118 Neb518d986c5a4c3a961bd96c56673222 rdf:first sg:person.01034577524.06
119 rdf:rest N1ab05dd467e74102906a21761a07c484
120 Necc24da5380a4f73878b93cb8d889b9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Genome, Human
122 rdf:type schema:DefinedTerm
123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biological Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
127 schema:name Genetics
128 rdf:type schema:DefinedTerm
129 sg:journal.1023790 schema:issn 1471-2164
130 schema:name BMC Genomics
131 rdf:type schema:Periodical
132 sg:person.01034577524.06 schema:affiliation https://www.grid.ac/institutes/grid.430432.2
133 schema:familyName Dror
134 schema:givenName Gideon
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034577524.06
136 rdf:type schema:Person
137 sg:person.01350536106.52 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
138 schema:familyName Shamir
139 schema:givenName Ron
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350536106.52
141 rdf:type schema:Person
142 sg:person.0650150106.25 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
143 schema:familyName Sorek
144 schema:givenName Rotem
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650150106.25
146 rdf:type schema:Person
147 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
148 https://doi.org/10.1038/35057062
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature01262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039854529
151 https://doi.org/10.1038/nature01262
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ng1159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026550951
154 https://doi.org/10.1038/ng1159
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1076803173 schema:CreativeWork
157 https://doi.org/10.1016/j.tig.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015732168
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.tig.2004.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050418456
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0014-5793(00)01581-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014937581
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.0409742102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052450389
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.0506139102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052915989
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/bti132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002384601
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/hmg/ddg137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032644844
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/29.13.2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014048616
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1101/gr.1208803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038134998
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1101/gr.2094104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050487471
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1101/gr.2572604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019131562
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1101/gr.764102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024713730
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1101/gr.9.12.1288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018310168
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.1082588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062657
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.1090100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009574243
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1108625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046921907
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1142/9789812704856_0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096052444
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/974614.974638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013968646
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1371/journal.pcbi.0010015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235031
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
196 schema:name School of Computer Science, Tel Aviv University, 69073, Tel-Aviv, Israel
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
199 schema:name Department of Human Genetics, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
200 Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 84-171, 94720, Berkeley, CA, USA
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.430432.2 schema:alternateName Academic College of Tel Aviv-Yafo
203 schema:name The Academic College of Tel-Aviv-Yaffo, 64044, Tel-Aviv, Israel
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...