Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Ilhem Diboun, Lorenz Wernisch, Christine Anne Orengo, Martin Koltzenburg

ABSTRACT

BACKGROUND: RNA amplification is necessary for profiling gene expression from small tissue samples. Previous studies have shown that the T7 based amplification techniques are reproducible but may distort the true abundance of targets. However, the consequences of such distortions on the ability to detect biological variation in expression have not been explored sufficiently to define the true extent of usability and limitations of such amplification techniques. RESULTS: We show that expression ratios are occasionally distorted by amplification using the Affymetrix small sample protocol version 2 due to a disproportional shift in intensity across biological samples. This occurs when a shift in one sample cannot be reflected in the other sample because the intensity would lie outside the dynamic range of the scanner. Interestingly, such distortions most commonly result in smaller ratios with the consequence of reducing the statistical significance of the ratios. This becomes more critical for less pronounced ratios where the evidence for differential expression is not strong. Indeed, statistical analysis by limma suggests that up to 87% of the genes with the largest and therefore most significant ratios (p < 10e(-20)) in the unamplified group have a p-value below 10e(-20) in the amplified group. On the other hand, only 69% of the more moderate ratios (10e(-20) < p < 10e(-10)) in the unamplified group have a p-value below 10e(-10) in the amplified group. Our analysis also suggests that, overall, limma shows better overlap of genes found to be significant in the amplified and unamplified groups than the Z-scores statistics. CONCLUSION: We conclude that microarray analysis of amplified samples performs best at detecting differences in gene expression, when these are large and when limma statistics are used. More... »

PAGES

252

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-7-252

DOI

http://dx.doi.org/10.1186/1471-2164-7-252

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005024130

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17029630


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ganglia, Spinal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred C57BL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Amplification Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spinal Cord", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Bioinformatics Unit, Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diboun", 
        "givenName": "Ilhem", 
        "id": "sg:person.01213535647.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213535647.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "School of Crystallography, Birkbeck College, University of London, Malet Street, WC1 7HX, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wernisch", 
        "givenName": "Lorenz", 
        "id": "sg:person.01132465512.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132465512.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Bioinformatics Unit, Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orengo", 
        "givenName": "Christine Anne", 
        "id": "sg:person.01136244107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Neural Plasticity Unit, UCL Institute of Child Health, 30 Guilford St, WC1N 1EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koltzenburg", 
        "givenName": "Martin", 
        "id": "sg:person.01062612677.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062612677.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1083/jcb.200406131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005144685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.011906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007159879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.011906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007159879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2004.03.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-4-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367754", 
          "https://doi.org/10.1186/1471-2164-4-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2003.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029864940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00258.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1525-1578(10)60008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044332337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mcne.1999.0814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048587042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1525-1578(10)60009-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050300580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.903510302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051705988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069289261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.22-04-01303.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074999712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/04363rn05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076813945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: RNA amplification is necessary for profiling gene expression from small tissue samples. Previous studies have shown that the T7 based amplification techniques are reproducible but may distort the true abundance of targets. However, the consequences of such distortions on the ability to detect biological variation in expression have not been explored sufficiently to define the true extent of usability and limitations of such amplification techniques.\nRESULTS: We show that expression ratios are occasionally distorted by amplification using the Affymetrix small sample protocol version 2 due to a disproportional shift in intensity across biological samples. This occurs when a shift in one sample cannot be reflected in the other sample because the intensity would lie outside the dynamic range of the scanner. Interestingly, such distortions most commonly result in smaller ratios with the consequence of reducing the statistical significance of the ratios. This becomes more critical for less pronounced ratios where the evidence for differential expression is not strong. Indeed, statistical analysis by limma suggests that up to 87% of the genes with the largest and therefore most significant ratios (p < 10e(-20)) in the unamplified group have a p-value below 10e(-20) in the amplified group. On the other hand, only 69% of the more moderate ratios (10e(-20) < p < 10e(-10)) in the unamplified group have a p-value below 10e(-10) in the amplified group. Our analysis also suggests that, overall, limma shows better overlap of genes found to be significant in the amplified and unamplified groups than the Z-scores statistics.\nCONCLUSION: We conclude that microarray analysis of amplified samples performs best at detecting differences in gene expression, when these are large and when limma statistics are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-7-252", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma", 
    "pagination": "252", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17f087cca250069e1557d54bf994acb527c8830fc3660a36e46dbca5c2fff45f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17029630"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-7-252"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005024130"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-7-252", 
      "https://app.dimensions.ai/details/publication/pub.1005024130"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-7-252"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-252'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-252'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-252'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-7-252'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      58 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-7-252 schema:about N2d392a06e08f4e068add10cb2b08df42
2 N2d7742e8e5d0493d8179777317062f75
3 N43426997cda644c3b75a7a9649519466
4 N48521b5e12f4488185cb9608e6e6255b
5 N504b6107062f4fe693d2ad42bbcbbf0b
6 N6fd35217d7cf4f8999381cd330db9942
7 N83c5a051ee8e4e9d96a98c666a493475
8 N8b6f456906f34862ba0e0d88792c6a0f
9 Nb1881936306e4da79e37e362bf13cf2d
10 Nda0753aeff1048928c50640e7cf40359
11 Ndb8a2388d1d54e8194e443fff10ded6d
12 Ne4aac414b81c4308b742d91fa8e294a3
13 Nfd614fefadcd41369aceaa1f168e3fba
14 Nff6175e44d924921b1cc224eb16d324e
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N9b4d5dd7ad0b4dfc9d986d4aab1b7b6f
18 schema:citation sg:pub.10.1038/ng1032
19 sg:pub.10.1186/1471-2164-4-4
20 sg:pub.10.1186/gb-2004-5-10-r80
21 https://doi.org/10.1002/cne.903510302
22 https://doi.org/10.1006/mcne.1999.0814
23 https://doi.org/10.1016/j.ab.2004.03.040
24 https://doi.org/10.1016/j.ygeno.2003.09.005
25 https://doi.org/10.1016/s1525-1578(10)60008-6
26 https://doi.org/10.1016/s1525-1578(10)60009-8
27 https://doi.org/10.1083/jcb.200406131
28 https://doi.org/10.1103/physreve.68.011906
29 https://doi.org/10.1152/ajpcell.00258.2004
30 https://doi.org/10.1523/jneurosci.22-04-01303.2002
31 https://doi.org/10.2144/04363rn05
32 https://doi.org/10.2202/1544-6115.1027
33 schema:datePublished 2006-12
34 schema:datePublishedReg 2006-12-01
35 schema:description BACKGROUND: RNA amplification is necessary for profiling gene expression from small tissue samples. Previous studies have shown that the T7 based amplification techniques are reproducible but may distort the true abundance of targets. However, the consequences of such distortions on the ability to detect biological variation in expression have not been explored sufficiently to define the true extent of usability and limitations of such amplification techniques. RESULTS: We show that expression ratios are occasionally distorted by amplification using the Affymetrix small sample protocol version 2 due to a disproportional shift in intensity across biological samples. This occurs when a shift in one sample cannot be reflected in the other sample because the intensity would lie outside the dynamic range of the scanner. Interestingly, such distortions most commonly result in smaller ratios with the consequence of reducing the statistical significance of the ratios. This becomes more critical for less pronounced ratios where the evidence for differential expression is not strong. Indeed, statistical analysis by limma suggests that up to 87% of the genes with the largest and therefore most significant ratios (p < 10e(-20)) in the unamplified group have a p-value below 10e(-20) in the amplified group. On the other hand, only 69% of the more moderate ratios (10e(-20) < p < 10e(-10)) in the unamplified group have a p-value below 10e(-10) in the amplified group. Our analysis also suggests that, overall, limma shows better overlap of genes found to be significant in the amplified and unamplified groups than the Z-scores statistics. CONCLUSION: We conclude that microarray analysis of amplified samples performs best at detecting differences in gene expression, when these are large and when limma statistics are used.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Nb99afdee519a47ddae99856755a609cc
40 Nd3329b35872448518c191c48f89a2b35
41 sg:journal.1023790
42 schema:name Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma
43 schema:pagination 252
44 schema:productId N39ee245e5c5d480e88aa077d411eabad
45 N5584919f0b2c4b1cb2bda6adc8acd38e
46 N7b1242062dfb4911ab40b3a662b0d682
47 Nd08e6a488a8b4d0ab2acebf5b1c01d10
48 Nf175e72dc6574c13bbe57e294aa92ce4
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005024130
50 https://doi.org/10.1186/1471-2164-7-252
51 schema:sdDatePublished 2019-04-11T00:14
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N8c179d6f471949118b05370da1cf46b4
54 schema:url http://link.springer.com/10.1186%2F1471-2164-7-252
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2d392a06e08f4e068add10cb2b08df42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Animals
60 rdf:type schema:DefinedTerm
61 N2d7742e8e5d0493d8179777317062f75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Statistics as Topic
63 rdf:type schema:DefinedTerm
64 N39ee245e5c5d480e88aa077d411eabad schema:name dimensions_id
65 schema:value pub.1005024130
66 rdf:type schema:PropertyValue
67 N43426997cda644c3b75a7a9649519466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Ganglia, Spinal
69 rdf:type schema:DefinedTerm
70 N48521b5e12f4488185cb9608e6e6255b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Linear Models
72 rdf:type schema:DefinedTerm
73 N504b6107062f4fe693d2ad42bbcbbf0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Bayes Theorem
75 rdf:type schema:DefinedTerm
76 N5584919f0b2c4b1cb2bda6adc8acd38e schema:name nlm_unique_id
77 schema:value 100965258
78 rdf:type schema:PropertyValue
79 N6fd35217d7cf4f8999381cd330db9942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Mice
81 rdf:type schema:DefinedTerm
82 N7b1242062dfb4911ab40b3a662b0d682 schema:name readcube_id
83 schema:value 17f087cca250069e1557d54bf994acb527c8830fc3660a36e46dbca5c2fff45f
84 rdf:type schema:PropertyValue
85 N83c5a051ee8e4e9d96a98c666a493475 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Gene Expression Profiling
87 rdf:type schema:DefinedTerm
88 N8b6f456906f34862ba0e0d88792c6a0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name RNA
90 rdf:type schema:DefinedTerm
91 N8c179d6f471949118b05370da1cf46b4 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N9872232ba90d40b493c90e9798256617 rdf:first sg:person.01062612677.27
94 rdf:rest rdf:nil
95 N9b4d5dd7ad0b4dfc9d986d4aab1b7b6f rdf:first sg:person.01213535647.63
96 rdf:rest Nc04ad4f03c8041aa91738dd1fda22189
97 Nb1881936306e4da79e37e362bf13cf2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Nucleic Acid Amplification Techniques
99 rdf:type schema:DefinedTerm
100 Nb99afdee519a47ddae99856755a609cc schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 Nb9b7b9f80da84b858067e68248120cb4 rdf:first sg:person.01136244107.52
103 rdf:rest N9872232ba90d40b493c90e9798256617
104 Nc04ad4f03c8041aa91738dd1fda22189 rdf:first sg:person.01132465512.22
105 rdf:rest Nb9b7b9f80da84b858067e68248120cb4
106 Nd08e6a488a8b4d0ab2acebf5b1c01d10 schema:name doi
107 schema:value 10.1186/1471-2164-7-252
108 rdf:type schema:PropertyValue
109 Nd3329b35872448518c191c48f89a2b35 schema:volumeNumber 7
110 rdf:type schema:PublicationVolume
111 Nda0753aeff1048928c50640e7cf40359 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Reproducibility of Results
113 rdf:type schema:DefinedTerm
114 Ndb8a2388d1d54e8194e443fff10ded6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Mice, Inbred C57BL
116 rdf:type schema:DefinedTerm
117 Ne4aac414b81c4308b742d91fa8e294a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Spinal Cord
119 rdf:type schema:DefinedTerm
120 Nf175e72dc6574c13bbe57e294aa92ce4 schema:name pubmed_id
121 schema:value 17029630
122 rdf:type schema:PropertyValue
123 Nfd614fefadcd41369aceaa1f168e3fba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 Nff6175e44d924921b1cc224eb16d324e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Oligonucleotide Array Sequence Analysis
128 rdf:type schema:DefinedTerm
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
133 schema:name Genetics
134 rdf:type schema:DefinedTerm
135 sg:journal.1023790 schema:issn 1471-2164
136 schema:name BMC Genomics
137 rdf:type schema:Periodical
138 sg:person.01062612677.27 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
139 schema:familyName Koltzenburg
140 schema:givenName Martin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062612677.27
142 rdf:type schema:Person
143 sg:person.01132465512.22 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
144 schema:familyName Wernisch
145 schema:givenName Lorenz
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132465512.22
147 rdf:type schema:Person
148 sg:person.01136244107.52 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
149 schema:familyName Orengo
150 schema:givenName Christine Anne
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52
152 rdf:type schema:Person
153 sg:person.01213535647.63 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
154 schema:familyName Diboun
155 schema:givenName Ilhem
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213535647.63
157 rdf:type schema:Person
158 sg:pub.10.1038/ng1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006930818
159 https://doi.org/10.1038/ng1032
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2164-4-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367754
162 https://doi.org/10.1186/1471-2164-4-4
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
165 https://doi.org/10.1186/gb-2004-5-10-r80
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/cne.903510302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051705988
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1006/mcne.1999.0814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048587042
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ab.2004.03.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022021208
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ygeno.2003.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029864940
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s1525-1578(10)60008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044332337
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s1525-1578(10)60009-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050300580
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1083/jcb.200406131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005144685
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.68.011906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007159879
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1152/ajpcell.00258.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693780
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1523/jneurosci.22-04-01303.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074999712
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2144/04363rn05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076813945
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
192 schema:name Bioinformatics Unit, Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK
193 Neural Plasticity Unit, UCL Institute of Child Health, 30 Guilford St, WC1N 1EH, London, UK
194 School of Crystallography, Birkbeck College, University of London, Malet Street, WC1 7HX, London, UK
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...