An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-05-08

AUTHORS

Mugdha Gadgil, Wei Lian, Chetan Gadgil, Vivek Kapur, Wei-Shou Hu

ABSTRACT

BACKGROUND: DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values. RESULTS: We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions. CONCLUSION: Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis. More... »

PAGES

66-66

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-6-66

DOI

http://dx.doi.org/10.1186/1471-2164-6-66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018191745

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15877823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Complementary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hybridization, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptomyces coelicolor", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gadgil", 
        "givenName": "Mugdha", 
        "id": "sg:person.0643714736.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643714736.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lian", 
        "givenName": "Wei", 
        "id": "sg:person.0676205305.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676205305.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, NC 27709 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, MN 55455 USA", 
            "Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, NC 27709 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gadgil", 
        "givenName": "Chetan", 
        "id": "sg:person.01211060741.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211060741.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street, S.E., Minneapolis, MN 55455 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street, S.E., Minneapolis, MN 55455 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapur", 
        "givenName": "Vivek", 
        "id": "sg:person.0631114411.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631114411.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-4-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013517083", 
          "https://doi.org/10.1186/1471-2164-4-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656138", 
          "https://doi.org/10.1038/nrg863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-05-08", 
    "datePublishedReg": "2005-05-08", 
    "description": "BACKGROUND: DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values.\nRESULTS: We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions.\nCONCLUSION: Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-6-66", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2515354", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "genomic DNA", 
      "DNA microarrays", 
      "non-coding sequences", 
      "genomic DNA strands", 
      "microarray assay", 
      "Comparative transcriptome analysis", 
      "anti-sense strand", 
      "transcriptome analysis", 
      "universal reference", 
      "microarray hybridization", 
      "bacterial systems", 
      "antisense strand", 
      "hybridization time", 
      "cDNA samples", 
      "RNA samples", 
      "DNA strands", 
      "DNA", 
      "microarrays", 
      "reference DNA", 
      "direct hybridization", 
      "hybridization", 
      "mobile strands", 
      "single strands", 
      "strands", 
      "invaluable tool", 
      "cDNA concentrations", 
      "assays", 
      "cDNA", 
      "fluorescence intensity", 
      "sequence", 
      "assay results", 
      "large number", 
      "attractive candidate", 
      "potential utility", 
      "wide range", 
      "relative concentrations", 
      "lower percentage", 
      "analysis", 
      "assay performance", 
      "concentration", 
      "presence", 
      "different dyes", 
      "results", 
      "candidates", 
      "samples", 
      "number", 
      "comprising", 
      "conditions", 
      "tool", 
      "study", 
      "common reference", 
      "use", 
      "model", 
      "lower values", 
      "dye", 
      "reference", 
      "utility", 
      "range", 
      "percentage", 
      "time", 
      "reaction", 
      "rate", 
      "system", 
      "true ratio", 
      "mathematical model", 
      "intensity", 
      "exploration", 
      "ratio", 
      "values", 
      "experimental study", 
      "initial concentration", 
      "cases", 
      "sense", 
      "design", 
      "solution", 
      "simulations", 
      "reference design", 
      "true value", 
      "performance", 
      "validity", 
      "experimental results", 
      "gene expression explorations", 
      "expression explorations", 
      "two-dye microarray", 
      "initial cDNA concentrations", 
      "immobilized single strands", 
      "channel DNA microarrays"
    ], 
    "name": "An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays", 
    "pagination": "66-66", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018191745"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-6-66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15877823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-6-66", 
      "https://app.dimensions.ai/details/publication/pub.1018191745"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_406.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-6-66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      129 URIs      118 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-6-66 schema:about N0e394b11c5344d80b0e2d2dfed28a4e6
2 N226cd79bc4f141d79aea93ff85227fb4
3 N2f038d015b644143afec2adbbdf3d06d
4 N320f2775d15048e0a5cb5e991dfd4b2b
5 N65550216916248db9a88f13fab0ef399
6 N765a48c12d734b9d97e2e6dce5c41092
7 N76e6e7f8f5784988b096745f66efab85
8 Na67f806867154fec8138b96511176bac
9 Nabd8f61b6fbd44d2a3abd568678f3482
10 Nc206757e4d084e519a7ea0dd86dce405
11 Nde6bd69a568c42a0b6ec6639fda664a5
12 Neb12dbcbdb374e2fbbec66b4947bd8e0
13 Nfd67bc8580ad48d1be5675219f633d1d
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N8861a862fe8f432da3eb11a332a87605
17 schema:citation sg:pub.10.1038/4462
18 sg:pub.10.1038/nrg863
19 sg:pub.10.1186/1471-2164-4-41
20 schema:datePublished 2005-05-08
21 schema:datePublishedReg 2005-05-08
22 schema:description BACKGROUND: DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values. RESULTS: We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions. CONCLUSION: Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N28302be76e47462796ebd5eb33456e78
27 Ndf60dbb0776a4a2e97e931e0d9a362ab
28 sg:journal.1023790
29 schema:keywords Comparative transcriptome analysis
30 DNA
31 DNA microarrays
32 DNA strands
33 RNA samples
34 analysis
35 anti-sense strand
36 antisense strand
37 assay performance
38 assay results
39 assays
40 attractive candidate
41 bacterial systems
42 cDNA
43 cDNA concentrations
44 cDNA samples
45 candidates
46 cases
47 channel DNA microarrays
48 common reference
49 comprising
50 concentration
51 conditions
52 design
53 different dyes
54 direct hybridization
55 dye
56 experimental results
57 experimental study
58 exploration
59 expression explorations
60 fluorescence intensity
61 gene expression explorations
62 genomic DNA
63 genomic DNA strands
64 hybridization
65 hybridization time
66 immobilized single strands
67 initial cDNA concentrations
68 initial concentration
69 intensity
70 invaluable tool
71 large number
72 lower percentage
73 lower values
74 mathematical model
75 microarray assay
76 microarray hybridization
77 microarrays
78 mobile strands
79 model
80 non-coding sequences
81 number
82 percentage
83 performance
84 potential utility
85 presence
86 range
87 rate
88 ratio
89 reaction
90 reference
91 reference DNA
92 reference design
93 relative concentrations
94 results
95 samples
96 sense
97 sequence
98 simulations
99 single strands
100 solution
101 strands
102 study
103 system
104 time
105 tool
106 transcriptome analysis
107 true ratio
108 true value
109 two-dye microarray
110 universal reference
111 use
112 utility
113 validity
114 values
115 wide range
116 schema:name An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays
117 schema:pagination 66-66
118 schema:productId N8c1b521b36834e6998442c01459948d4
119 Nac2861fdf39c4b1d89f3155c625c3168
120 Nf2831c64822e457fbc40e95c7c471639
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018191745
122 https://doi.org/10.1186/1471-2164-6-66
123 schema:sdDatePublished 2021-11-01T18:08
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher N936740fadea546ef96f2602c816e719d
126 schema:url https://doi.org/10.1186/1471-2164-6-66
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N0b20f5d901674bb78d71a36b60173a81 rdf:first sg:person.01211060741.29
131 rdf:rest N76ff2cec60784f4aade25f58e8bf41d3
132 N0e394b11c5344d80b0e2d2dfed28a4e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Models, Theoretical
134 rdf:type schema:DefinedTerm
135 N226cd79bc4f141d79aea93ff85227fb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Nucleic Acid Hybridization
137 rdf:type schema:DefinedTerm
138 N28302be76e47462796ebd5eb33456e78 schema:volumeNumber 6
139 rdf:type schema:PublicationVolume
140 N2f038d015b644143afec2adbbdf3d06d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Streptomyces coelicolor
142 rdf:type schema:DefinedTerm
143 N320f2775d15048e0a5cb5e991dfd4b2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Oligonucleotide Array Sequence Analysis
145 rdf:type schema:DefinedTerm
146 N65550216916248db9a88f13fab0ef399 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Genome, Bacterial
148 rdf:type schema:DefinedTerm
149 N765a48c12d734b9d97e2e6dce5c41092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Gene Expression Profiling
151 rdf:type schema:DefinedTerm
152 N76e6e7f8f5784988b096745f66efab85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Genomics
154 rdf:type schema:DefinedTerm
155 N76ff2cec60784f4aade25f58e8bf41d3 rdf:first sg:person.0631114411.35
156 rdf:rest Nbfa96b296bd7407c867317689a8f4057
157 N8861a862fe8f432da3eb11a332a87605 rdf:first sg:person.0643714736.87
158 rdf:rest Ncde5405e1cc442ef817ead3982d28833
159 N8c1b521b36834e6998442c01459948d4 schema:name doi
160 schema:value 10.1186/1471-2164-6-66
161 rdf:type schema:PropertyValue
162 N936740fadea546ef96f2602c816e719d schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 Na67f806867154fec8138b96511176bac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Genes, Bacterial
166 rdf:type schema:DefinedTerm
167 Nabd8f61b6fbd44d2a3abd568678f3482 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name DNA, Complementary
169 rdf:type schema:DefinedTerm
170 Nac2861fdf39c4b1d89f3155c625c3168 schema:name pubmed_id
171 schema:value 15877823
172 rdf:type schema:PropertyValue
173 Nbfa96b296bd7407c867317689a8f4057 rdf:first sg:person.01064261433.49
174 rdf:rest rdf:nil
175 Nc206757e4d084e519a7ea0dd86dce405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Models, Statistical
177 rdf:type schema:DefinedTerm
178 Ncde5405e1cc442ef817ead3982d28833 rdf:first sg:person.0676205305.42
179 rdf:rest N0b20f5d901674bb78d71a36b60173a81
180 Nde6bd69a568c42a0b6ec6639fda664a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Sequence Analysis, DNA
182 rdf:type schema:DefinedTerm
183 Ndf60dbb0776a4a2e97e931e0d9a362ab schema:issueNumber 1
184 rdf:type schema:PublicationIssue
185 Neb12dbcbdb374e2fbbec66b4947bd8e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name DNA
187 rdf:type schema:DefinedTerm
188 Nf2831c64822e457fbc40e95c7c471639 schema:name dimensions_id
189 schema:value pub.1018191745
190 rdf:type schema:PropertyValue
191 Nfd67bc8580ad48d1be5675219f633d1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Hybridization, Genetic
193 rdf:type schema:DefinedTerm
194 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
195 schema:name Biological Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
198 schema:name Genetics
199 rdf:type schema:DefinedTerm
200 sg:grant.2515354 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-6-66
201 rdf:type schema:MonetaryGrant
202 sg:journal.1023790 schema:issn 1471-2164
203 schema:name BMC Genomics
204 schema:publisher Springer Nature
205 rdf:type schema:Periodical
206 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
207 schema:familyName Hu
208 schema:givenName Wei-Shou
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
210 rdf:type schema:Person
211 sg:person.01211060741.29 schema:affiliation grid-institutes:None
212 schema:familyName Gadgil
213 schema:givenName Chetan
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211060741.29
215 rdf:type schema:Person
216 sg:person.0631114411.35 schema:affiliation grid-institutes:grid.17635.36
217 schema:familyName Kapur
218 schema:givenName Vivek
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631114411.35
220 rdf:type schema:Person
221 sg:person.0643714736.87 schema:affiliation grid-institutes:grid.17635.36
222 schema:familyName Gadgil
223 schema:givenName Mugdha
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643714736.87
225 rdf:type schema:Person
226 sg:person.0676205305.42 schema:affiliation grid-institutes:grid.17635.36
227 schema:familyName Lian
228 schema:givenName Wei
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676205305.42
230 rdf:type schema:Person
231 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
232 https://doi.org/10.1038/4462
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nrg863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004656138
235 https://doi.org/10.1038/nrg863
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1471-2164-4-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013517083
238 https://doi.org/10.1186/1471-2164-4-41
239 rdf:type schema:CreativeWork
240 grid-institutes:None schema:alternateName Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, NC 27709 USA
241 schema:name School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, MN 55455 USA
242 Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, NC 27709 USA
243 rdf:type schema:Organization
244 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA
245 Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street, S.E., Minneapolis, MN 55455 USA
246 schema:name Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., Minneapolis, MN 55455 USA
247 Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street, S.E., Minneapolis, MN 55455 USA
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...