An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Mugdha Gadgil, Wei Lian, Chetan Gadgil, Vivek Kapur, Wei-Shou Hu

ABSTRACT

BACKGROUND: DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values. RESULTS: We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions. CONCLUSION: Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis. More... »

PAGES

66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-6-66

DOI

http://dx.doi.org/10.1186/1471-2164-6-66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018191745

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15877823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Complementary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hybridization, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptomyces coelicolor", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gadgil", 
        "givenName": "Mugdha", 
        "id": "sg:person.0643714736.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643714736.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lian", 
        "givenName": "Wei", 
        "id": "sg:person.0676205305.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676205305.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Mathematics, University of Minnesota, 270A Vincent Hall, 55455, Minneapolis, MN, USA", 
            "Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, 27709, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gadgil", 
        "givenName": "Chetan", 
        "id": "sg:person.01211060741.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211060741.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street, 55455, S.E., Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapur", 
        "givenName": "Vivek", 
        "id": "sg:person.0631114411.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631114411.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/jb.183.2.545-556.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000008075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/gah038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001760720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(03)01164-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003681600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.7.1719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004170108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(71)90434-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004456995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656138", 
          "https://doi.org/10.1038/nrg863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656138", 
          "https://doi.org/10.1038/nrg863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnh078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006476706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-4-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013517083", 
          "https://doi.org/10.1186/1471-2164-4-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.2001.5212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016410222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma970381+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016892945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma970381+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016892945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2004.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022908158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81845-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024010988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(65)80331-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037475343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01382-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037788678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnf103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038120192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/2.2.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048829539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00023a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056173395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00046a025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056174546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/11.4.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.166401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060407403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/02334mt06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075179860"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values.\nRESULTS: We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions.\nCONCLUSION: Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-6-66", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2515354", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays", 
    "pagination": "66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56ada902f321a290a6e77b41de2cc40860a667fb4e7ca1dfa9ff5374f44fb430"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15877823"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-6-66"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018191745"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-6-66", 
      "https://app.dimensions.ai/details/publication/pub.1018191745"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-6-66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-66'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      65 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-6-66 schema:about N06de31c1e66d4fcd994b120c10feddd5
2 N0953f11d61bf47628bb4b4e7f99024a0
3 N1a97c5deb9b04c278783b3db9778001b
4 N6ab59a2de3c74e95a2adaeab5d35db68
5 N72aa3774e8144f228849fec8cf85b109
6 N76d2068154e346c1954f00e7783e6c7b
7 N98fe4c8941dc49b999aac74aace3f0d3
8 N993890b92a0244ea9ebfc31e581d259e
9 Nc22a94a78e3c407eaa73698a984eac99
10 Nd147803bcf574ef499722b9e1a969efd
11 Nd9d4cb4219eb48059abb19708bfb8add
12 Nea1e23840c2c4289a2e1f5abe626f1f6
13 Neda386ed37a848b59cf483a5a8475c10
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N562be3c3bcdf44c78a452843dd4bd64c
17 schema:citation sg:pub.10.1038/4462
18 sg:pub.10.1038/nrg863
19 sg:pub.10.1186/1471-2164-4-41
20 https://doi.org/10.1006/abio.2001.5212
21 https://doi.org/10.1016/0022-2836(71)90434-7
22 https://doi.org/10.1016/j.jbiotec.2004.05.008
23 https://doi.org/10.1016/s0014-5793(03)01164-5
24 https://doi.org/10.1016/s0022-2836(65)80331-x
25 https://doi.org/10.1016/s0092-8674(00)81845-0
26 https://doi.org/10.1016/s0968-0004(99)01382-1
27 https://doi.org/10.1021/ma00023a013
28 https://doi.org/10.1021/ma00046a025
29 https://doi.org/10.1021/ma970381+
30 https://doi.org/10.1093/bioinformatics/11.4.457
31 https://doi.org/10.1093/biostatistics/2.2.183
32 https://doi.org/10.1093/humrep/gah038
33 https://doi.org/10.1093/nar/27.7.1719
34 https://doi.org/10.1093/nar/gnf103
35 https://doi.org/10.1093/nar/gnh078
36 https://doi.org/10.1101/gr.166401
37 https://doi.org/10.1126/science.270.5235.467
38 https://doi.org/10.1128/jb.183.2.545-556.2001
39 https://doi.org/10.2144/02334mt06
40 schema:datePublished 2005-12
41 schema:datePublishedReg 2005-12-01
42 schema:description BACKGROUND: DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values. RESULTS: We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions. CONCLUSION: Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N93db3ea5e6734700b968177f49dd5fad
47 Nfcd5c43316f34052a235ed32f556c668
48 sg:journal.1023790
49 schema:name An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays
50 schema:pagination 66
51 schema:productId N6f1f2c60551342f8a27a80f84e74dc56
52 N72222f1a9a7449148b4e91af09af42a6
53 N800fc0b42a8145cc8d1ed2ac3c576e9c
54 N8bfa328ec089406993621d11cc1b58d8
55 Naeb4effdfd7a43d0a9079121c4e9beb3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018191745
57 https://doi.org/10.1186/1471-2164-6-66
58 schema:sdDatePublished 2019-04-10T18:18
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf6a33a5963044c6c8ca15b7016c2cc57
61 schema:url http://link.springer.com/10.1186%2F1471-2164-6-66
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N02e73a6f21b14495bc6bff61470df048 rdf:first sg:person.01064261433.49
66 rdf:rest rdf:nil
67 N06de31c1e66d4fcd994b120c10feddd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Models, Statistical
69 rdf:type schema:DefinedTerm
70 N0953f11d61bf47628bb4b4e7f99024a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Hybridization, Genetic
72 rdf:type schema:DefinedTerm
73 N1a97c5deb9b04c278783b3db9778001b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Oligonucleotide Array Sequence Analysis
75 rdf:type schema:DefinedTerm
76 N22342c6c3af243fbb0d4637f8bfd6fc5 rdf:first sg:person.01211060741.29
77 rdf:rest Nbf3e5f3779eb42d988db27f9d93f1de1
78 N562be3c3bcdf44c78a452843dd4bd64c rdf:first sg:person.0643714736.87
79 rdf:rest Na26cc570cf6a422e82a04b54ccf50c10
80 N6ab59a2de3c74e95a2adaeab5d35db68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Gene Expression Profiling
82 rdf:type schema:DefinedTerm
83 N6f1f2c60551342f8a27a80f84e74dc56 schema:name pubmed_id
84 schema:value 15877823
85 rdf:type schema:PropertyValue
86 N72222f1a9a7449148b4e91af09af42a6 schema:name nlm_unique_id
87 schema:value 100965258
88 rdf:type schema:PropertyValue
89 N72aa3774e8144f228849fec8cf85b109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Nucleic Acid Hybridization
91 rdf:type schema:DefinedTerm
92 N76d2068154e346c1954f00e7783e6c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Streptomyces coelicolor
94 rdf:type schema:DefinedTerm
95 N800fc0b42a8145cc8d1ed2ac3c576e9c schema:name dimensions_id
96 schema:value pub.1018191745
97 rdf:type schema:PropertyValue
98 N8bfa328ec089406993621d11cc1b58d8 schema:name doi
99 schema:value 10.1186/1471-2164-6-66
100 rdf:type schema:PropertyValue
101 N93db3ea5e6734700b968177f49dd5fad schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N98fe4c8941dc49b999aac74aace3f0d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genomics
105 rdf:type schema:DefinedTerm
106 N993890b92a0244ea9ebfc31e581d259e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genome, Bacterial
108 rdf:type schema:DefinedTerm
109 Na26cc570cf6a422e82a04b54ccf50c10 rdf:first sg:person.0676205305.42
110 rdf:rest N22342c6c3af243fbb0d4637f8bfd6fc5
111 Naeb4effdfd7a43d0a9079121c4e9beb3 schema:name readcube_id
112 schema:value 56ada902f321a290a6e77b41de2cc40860a667fb4e7ca1dfa9ff5374f44fb430
113 rdf:type schema:PropertyValue
114 Nbf3e5f3779eb42d988db27f9d93f1de1 rdf:first sg:person.0631114411.35
115 rdf:rest N02e73a6f21b14495bc6bff61470df048
116 Nc22a94a78e3c407eaa73698a984eac99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name DNA, Complementary
118 rdf:type schema:DefinedTerm
119 Nd147803bcf574ef499722b9e1a969efd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name DNA
121 rdf:type schema:DefinedTerm
122 Nd9d4cb4219eb48059abb19708bfb8add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Genes, Bacterial
124 rdf:type schema:DefinedTerm
125 Nea1e23840c2c4289a2e1f5abe626f1f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Sequence Analysis, DNA
127 rdf:type schema:DefinedTerm
128 Neda386ed37a848b59cf483a5a8475c10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Models, Theoretical
130 rdf:type schema:DefinedTerm
131 Nf6a33a5963044c6c8ca15b7016c2cc57 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nfcd5c43316f34052a235ed32f556c668 schema:volumeNumber 6
134 rdf:type schema:PublicationVolume
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:grant.2515354 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-6-66
142 rdf:type schema:MonetaryGrant
143 sg:journal.1023790 schema:issn 1471-2164
144 schema:name BMC Genomics
145 rdf:type schema:Periodical
146 sg:person.01064261433.49 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
147 schema:familyName Hu
148 schema:givenName Wei-Shou
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
150 rdf:type schema:Person
151 sg:person.01211060741.29 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
152 schema:familyName Gadgil
153 schema:givenName Chetan
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211060741.29
155 rdf:type schema:Person
156 sg:person.0631114411.35 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
157 schema:familyName Kapur
158 schema:givenName Vivek
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631114411.35
160 rdf:type schema:Person
161 sg:person.0643714736.87 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
162 schema:familyName Gadgil
163 schema:givenName Mugdha
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643714736.87
165 rdf:type schema:Person
166 sg:person.0676205305.42 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
167 schema:familyName Lian
168 schema:givenName Wei
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676205305.42
170 rdf:type schema:Person
171 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
172 https://doi.org/10.1038/4462
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nrg863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004656138
175 https://doi.org/10.1038/nrg863
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2164-4-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013517083
178 https://doi.org/10.1186/1471-2164-4-41
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1006/abio.2001.5212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016410222
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/0022-2836(71)90434-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004456995
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jbiotec.2004.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022908158
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0014-5793(03)01164-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003681600
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0022-2836(65)80331-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037475343
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0092-8674(00)81845-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024010988
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0968-0004(99)01382-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037788678
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/ma00023a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056173395
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/ma00046a025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056174546
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/ma970381+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1016892945
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/11.4.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413515
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/biostatistics/2.2.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048829539
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/humrep/gah038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001760720
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/nar/27.7.1719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004170108
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/gnf103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038120192
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gnh078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006476706
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.166401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407403
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/jb.183.2.545-556.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008075
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2144/02334mt06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075179860
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
221 schema:name Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washnigton Ave. S.E., 55455, Minneapolis, MN, USA
222 Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street, 55455, S.E., Minneapolis, MN, USA
223 School of Mathematics, University of Minnesota, 270A Vincent Hall, 55455, Minneapolis, MN, USA
224 Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, 27709, NC, USA
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...