Gene expression signature of estrogen receptor α status in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Martín C Abba, Yuhui Hu, Hongxia Sun, Jeffrey A Drake, Sally Gaddis, Keith Baggerly, Aysegul Sahin, C Marcelo Aldaz

ABSTRACT

BACKGROUND: Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE) profiles of 26 human breast carcinomas based on their estrogen receptor alpha (ER) status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. RESULTS: We identified 520 transcripts differentially expressed between ERalpha-positive (+) and ERalpha-negative (-) primary breast tumors (Fold change >or= 2; p < 0.05). Furthermore, we identified 220 high-affinity Estrogen Responsive Elements (EREs) distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERalpha (+) breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO) biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011), calcium ion binding related transcripts (p = 0.033) and steroid hormone receptor activity related transcripts (p = 0.031). SAGE data associated with ERalpha status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERalpha associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERalpha (+) invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. CONCLUSION: The integration of the breast cancer comparative transcriptome analysis based on ERalpha status coupled to the genome-wide identification of high-affinity EREs and GO over-representation analysis, provide useful information for validation and discovery of signaling networks related to estrogen response in this malignancy. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-6-37

DOI

http://dx.doi.org/10.1186/1471-2164-6-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006938509

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15762987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Estrogen Receptor alpha", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Estrogens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Response Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reverse Transcriptase Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Up-Regulation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abba", 
        "givenName": "Mart\u00edn C", 
        "id": "sg:person.0776634066.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776634066.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yuhui", 
        "id": "sg:person.07766364617.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766364617.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Hongxia", 
        "id": "sg:person.0613265650.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613265650.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drake", 
        "givenName": "Jeffrey A", 
        "id": "sg:person.016705510537.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705510537.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaddis", 
        "givenName": "Sally", 
        "id": "sg:person.012072222507.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072222507.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baggerly", 
        "givenName": "Keith", 
        "id": "sg:person.0731747000.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731747000.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahin", 
        "givenName": "Aysegul", 
        "id": "sg:person.015041554177.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041554177.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aldaz", 
        "givenName": "C Marcelo", 
        "id": "sg:person.01157235247.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157235247.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/geno.2000.6370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000260927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1732912100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000610606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-10-r70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001293245", 
          "https://doi.org/10.1186/gb-2003-4-10-r70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.critrevonc.2003.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003492709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2004.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006515086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0932692100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007535956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.201162998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014198831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014907690", 
          "https://doi.org/10.1186/bcr438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015262743", 
          "https://doi.org/10.1186/bcr899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015262743", 
          "https://doi.org/10.1186/bcr899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m210106200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017645446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)00162-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017869374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.r100029200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.23.23.8651-8667.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018312794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-5-p3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021292424", 
          "https://doi.org/10.1186/gb-2003-4-5-p3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80046-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021801973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4773(01)00515-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026802776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0277-5379(89)90015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031577491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m112414200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033835893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.14.2905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034793866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-0760(00)00108-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036079296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tem.2004.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036321189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041460872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-9-r60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041539408", 
          "https://doi.org/10.1186/gb-2003-4-9-r60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.146.2.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042759397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra000471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045512443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m207410200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050790529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.146.6.1375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053421534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.146.6.1375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053421534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/endo.140.6.6751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064283120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/me.2003-0044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064327061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/me.2003-0441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064327158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/mend.13.5.0281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064331818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074730771", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074865681", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074881956", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076595626", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE) profiles of 26 human breast carcinomas based on their estrogen receptor alpha (ER) status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts.\nRESULTS: We identified 520 transcripts differentially expressed between ERalpha-positive (+) and ERalpha-negative (-) primary breast tumors (Fold change >or= 2; p < 0.05). Furthermore, we identified 220 high-affinity Estrogen Responsive Elements (EREs) distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERalpha (+) breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO) biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011), calcium ion binding related transcripts (p = 0.033) and steroid hormone receptor activity related transcripts (p = 0.031). SAGE data associated with ERalpha status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERalpha associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERalpha (+) invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR.\nCONCLUSION: The integration of the breast cancer comparative transcriptome analysis based on ERalpha status coupled to the genome-wide identification of high-affinity EREs and GO over-representation analysis, provide useful information for validation and discovery of signaling networks related to estrogen response in this malignancy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-6-37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2695953", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439103", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Gene expression signature of estrogen receptor \u03b1 status in breast cancer", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "210d3889d0ba197c3efb35ac727ada220e029bbecca63e76924cd82f61ac5edd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15762987"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-6-37"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006938509"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-6-37", 
      "https://app.dimensions.ai/details/publication/pub.1006938509"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-6-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-6-37'


 

This table displays all metadata directly associated to this object as RDF triples.

314 TRIPLES      21 PREDICATES      86 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-6-37 schema:about N1cb4b4c1715b416d874c4706ddf0d385
2 N1dbe416fed86473d8d873f0e20b6cee3
3 N21bd877b01fc42eca762da3dbadbf0f0
4 N3be1845c7608497b826c2feed45eaaf4
5 N5e4274ffff2846c99f8bc489300f00bc
6 N61689b20779e4cda9f89fe77007a119f
7 N6c5428b15013461bae68877960da85e2
8 N74ac4d4cd41d4072b0adfd3c198bb3a0
9 N84d9354ab2474e45b2a56d313fb221a6
10 N9cb5fec9b05944afac6e512f98976622
11 N9fd626434cd947839dcdbec388a60796
12 Ncd94ab704f1244df932f2178c228c6f5
13 Nd1c89ad28a9543fea9c56d5ce144a848
14 Ne8454bcba2bc488fbf9e5720a8749d5e
15 Nea83e984fe734a5d82b10f9c3316450e
16 Nead674f395f44abc88e3838492888409
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N453958a9dbdd42d59d58f5ede6a54e6d
20 schema:citation sg:pub.10.1038/35021093
21 sg:pub.10.1038/415530a
22 sg:pub.10.1038/75556
23 sg:pub.10.1186/bcr438
24 sg:pub.10.1186/bcr899
25 sg:pub.10.1186/gb-2003-4-10-r70
26 sg:pub.10.1186/gb-2003-4-5-p3
27 sg:pub.10.1186/gb-2003-4-9-r60
28 https://app.dimensions.ai/details/publication/pub.1074730771
29 https://app.dimensions.ai/details/publication/pub.1074865681
30 https://app.dimensions.ai/details/publication/pub.1074881956
31 https://app.dimensions.ai/details/publication/pub.1076595626
32 https://doi.org/10.1002/cncr.20095
33 https://doi.org/10.1006/geno.2000.6370
34 https://doi.org/10.1016/0277-5379(89)90015-1
35 https://doi.org/10.1016/j.critrevonc.2003.09.003
36 https://doi.org/10.1016/j.devcel.2004.07.007
37 https://doi.org/10.1016/j.tem.2004.01.008
38 https://doi.org/10.1016/s0092-8674(00)80046-x
39 https://doi.org/10.1016/s0092-8674(04)00162-x
40 https://doi.org/10.1016/s0925-4773(01)00515-9
41 https://doi.org/10.1016/s0960-0760(00)00108-4
42 https://doi.org/10.1056/nejmra000471
43 https://doi.org/10.1073/pnas.0932692100
44 https://doi.org/10.1073/pnas.1732912100
45 https://doi.org/10.1073/pnas.201162998
46 https://doi.org/10.1074/jbc.m112414200
47 https://doi.org/10.1074/jbc.m207410200
48 https://doi.org/10.1074/jbc.m210106200
49 https://doi.org/10.1074/jbc.r100029200
50 https://doi.org/10.1083/jcb.146.2.477
51 https://doi.org/10.1083/jcb.146.6.1375
52 https://doi.org/10.1093/bioinformatics/btg173
53 https://doi.org/10.1093/bioinformatics/btg282
54 https://doi.org/10.1093/nar/29.14.2905
55 https://doi.org/10.1126/science.270.5235.484
56 https://doi.org/10.1128/mcb.23.23.8651-8667.2003
57 https://doi.org/10.1210/endo.140.6.6751
58 https://doi.org/10.1210/me.2003-0044
59 https://doi.org/10.1210/me.2003-0441
60 https://doi.org/10.1210/mend.13.5.0281
61 schema:datePublished 2005-12
62 schema:datePublishedReg 2005-12-01
63 schema:description BACKGROUND: Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE) profiles of 26 human breast carcinomas based on their estrogen receptor alpha (ER) status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. RESULTS: We identified 520 transcripts differentially expressed between ERalpha-positive (+) and ERalpha-negative (-) primary breast tumors (Fold change >or= 2; p < 0.05). Furthermore, we identified 220 high-affinity Estrogen Responsive Elements (EREs) distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERalpha (+) breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO) biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011), calcium ion binding related transcripts (p = 0.033) and steroid hormone receptor activity related transcripts (p = 0.031). SAGE data associated with ERalpha status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERalpha associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERalpha (+) invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. CONCLUSION: The integration of the breast cancer comparative transcriptome analysis based on ERalpha status coupled to the genome-wide identification of high-affinity EREs and GO over-representation analysis, provide useful information for validation and discovery of signaling networks related to estrogen response in this malignancy.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree true
67 schema:isPartOf N141bd7165a5d41d7bed712c46a2cd2ed
68 N777f35aab5b64d29bae853f3e5b20af9
69 sg:journal.1023790
70 schema:name Gene expression signature of estrogen receptor α status in breast cancer
71 schema:pagination 37
72 schema:productId N0756858be2be46129fa673c24b1b1121
73 Nae03f43081b64b8b85b5df0c4414dffb
74 Nb14ae5bad87645a7a87cbc77bbaadc0d
75 Ne6c88df999eb450db44d2142549e0be1
76 Nf0ceefe5d4354d0999b0709b10193a31
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938509
78 https://doi.org/10.1186/1471-2164-6-37
79 schema:sdDatePublished 2019-04-10T22:29
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N776d92734f544bca8c6cd91c825aadaa
82 schema:url http://link.springer.com/10.1186%2F1471-2164-6-37
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0756858be2be46129fa673c24b1b1121 schema:name dimensions_id
87 schema:value pub.1006938509
88 rdf:type schema:PropertyValue
89 N0761a4c66b1246828a0c9cb96a95679c rdf:first sg:person.012072222507.62
90 rdf:rest N247f51f015514cb3aa9f7ebc22af1cd3
91 N08abb03d5c5040189ae6652a7590605a rdf:first sg:person.016705510537.52
92 rdf:rest N0761a4c66b1246828a0c9cb96a95679c
93 N0933c5fa49314b13bfbe52534d59fe4a rdf:first sg:person.01157235247.94
94 rdf:rest rdf:nil
95 N141bd7165a5d41d7bed712c46a2cd2ed schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N1cb4b4c1715b416d874c4706ddf0d385 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N1dbe416fed86473d8d873f0e20b6cee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Phenotype
102 rdf:type schema:DefinedTerm
103 N21bd877b01fc42eca762da3dbadbf0f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Up-Regulation
105 rdf:type schema:DefinedTerm
106 N247f51f015514cb3aa9f7ebc22af1cd3 rdf:first sg:person.0731747000.61
107 rdf:rest N684c6b7eeadd4d0386a22cbd3a3bec3b
108 N3be1845c7608497b826c2feed45eaaf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Gene Expression Regulation, Neoplastic
110 rdf:type schema:DefinedTerm
111 N453958a9dbdd42d59d58f5ede6a54e6d rdf:first sg:person.0776634066.02
112 rdf:rest N535f44c19ba14e5c8c937cf2d2fe346d
113 N535f44c19ba14e5c8c937cf2d2fe346d rdf:first sg:person.07766364617.32
114 rdf:rest Nc602d5b307c24fa1bb21573dec494197
115 N5e4274ffff2846c99f8bc489300f00bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Response Elements
117 rdf:type schema:DefinedTerm
118 N61689b20779e4cda9f89fe77007a119f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Expression Profiling
120 rdf:type schema:DefinedTerm
121 N684c6b7eeadd4d0386a22cbd3a3bec3b rdf:first sg:person.015041554177.45
122 rdf:rest N0933c5fa49314b13bfbe52534d59fe4a
123 N6c5428b15013461bae68877960da85e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Estrogens
125 rdf:type schema:DefinedTerm
126 N74ac4d4cd41d4072b0adfd3c198bb3a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Reverse Transcriptase Polymerase Chain Reaction
128 rdf:type schema:DefinedTerm
129 N776d92734f544bca8c6cd91c825aadaa schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N777f35aab5b64d29bae853f3e5b20af9 schema:volumeNumber 6
132 rdf:type schema:PublicationVolume
133 N84d9354ab2474e45b2a56d313fb221a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Databases, Genetic
135 rdf:type schema:DefinedTerm
136 N9cb5fec9b05944afac6e512f98976622 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Gene Library
138 rdf:type schema:DefinedTerm
139 N9fd626434cd947839dcdbec388a60796 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Immunohistochemistry
141 rdf:type schema:DefinedTerm
142 Nae03f43081b64b8b85b5df0c4414dffb schema:name pubmed_id
143 schema:value 15762987
144 rdf:type schema:PropertyValue
145 Nb14ae5bad87645a7a87cbc77bbaadc0d schema:name doi
146 schema:value 10.1186/1471-2164-6-37
147 rdf:type schema:PropertyValue
148 Nc602d5b307c24fa1bb21573dec494197 rdf:first sg:person.0613265650.25
149 rdf:rest N08abb03d5c5040189ae6652a7590605a
150 Ncd94ab704f1244df932f2178c228c6f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Estrogen Receptor alpha
152 rdf:type schema:DefinedTerm
153 Nd1c89ad28a9543fea9c56d5ce144a848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Breast Neoplasms
155 rdf:type schema:DefinedTerm
156 Ne6c88df999eb450db44d2142549e0be1 schema:name readcube_id
157 schema:value 210d3889d0ba197c3efb35ac727ada220e029bbecca63e76924cd82f61ac5edd
158 rdf:type schema:PropertyValue
159 Ne8454bcba2bc488fbf9e5720a8749d5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Computational Biology
161 rdf:type schema:DefinedTerm
162 Nea83e984fe734a5d82b10f9c3316450e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Genetic Markers
164 rdf:type schema:DefinedTerm
165 Nead674f395f44abc88e3838492888409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Biomarkers, Tumor
167 rdf:type schema:DefinedTerm
168 Nf0ceefe5d4354d0999b0709b10193a31 schema:name nlm_unique_id
169 schema:value 100965258
170 rdf:type schema:PropertyValue
171 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
172 schema:name Biological Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
175 schema:name Genetics
176 rdf:type schema:DefinedTerm
177 sg:grant.2439103 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-6-37
178 rdf:type schema:MonetaryGrant
179 sg:grant.2695953 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-6-37
180 rdf:type schema:MonetaryGrant
181 sg:journal.1023790 schema:issn 1471-2164
182 schema:name BMC Genomics
183 rdf:type schema:Periodical
184 sg:person.01157235247.94 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
185 schema:familyName Aldaz
186 schema:givenName C Marcelo
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157235247.94
188 rdf:type schema:Person
189 sg:person.012072222507.62 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
190 schema:familyName Gaddis
191 schema:givenName Sally
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072222507.62
193 rdf:type schema:Person
194 sg:person.015041554177.45 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
195 schema:familyName Sahin
196 schema:givenName Aysegul
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041554177.45
198 rdf:type schema:Person
199 sg:person.016705510537.52 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
200 schema:familyName Drake
201 schema:givenName Jeffrey A
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705510537.52
203 rdf:type schema:Person
204 sg:person.0613265650.25 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
205 schema:familyName Sun
206 schema:givenName Hongxia
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613265650.25
208 rdf:type schema:Person
209 sg:person.0731747000.61 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
210 schema:familyName Baggerly
211 schema:givenName Keith
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731747000.61
213 rdf:type schema:Person
214 sg:person.0776634066.02 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
215 schema:familyName Abba
216 schema:givenName Martín C
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776634066.02
218 rdf:type schema:Person
219 sg:person.07766364617.32 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
220 schema:familyName Hu
221 schema:givenName Yuhui
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766364617.32
223 rdf:type schema:Person
224 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
225 https://doi.org/10.1038/35021093
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
228 https://doi.org/10.1038/415530a
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
231 https://doi.org/10.1038/75556
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/bcr438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014907690
234 https://doi.org/10.1186/bcr438
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/bcr899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015262743
237 https://doi.org/10.1186/bcr899
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/gb-2003-4-10-r70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293245
240 https://doi.org/10.1186/gb-2003-4-10-r70
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/gb-2003-4-5-p3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021292424
243 https://doi.org/10.1186/gb-2003-4-5-p3
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/gb-2003-4-9-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041539408
246 https://doi.org/10.1186/gb-2003-4-9-r60
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1074730771 schema:CreativeWork
249 https://app.dimensions.ai/details/publication/pub.1074865681 schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1074881956 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1076595626 schema:CreativeWork
252 https://doi.org/10.1002/cncr.20095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041460872
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1006/geno.2000.6370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000260927
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/0277-5379(89)90015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031577491
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.critrevonc.2003.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003007379
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.devcel.2004.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006515086
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.tem.2004.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036321189
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0092-8674(00)80046-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021801973
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0092-8674(04)00162-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017869374
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/s0925-4773(01)00515-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026802776
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/s0960-0760(00)00108-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036079296
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1056/nejmra000471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045512443
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1073/pnas.0932692100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007535956
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1073/pnas.1732912100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000610606
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1073/pnas.201162998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014198831
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1074/jbc.m112414200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033835893
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1074/jbc.m207410200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048077248
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1074/jbc.m210106200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017645446
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1074/jbc.r100029200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018103816
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1083/jcb.146.2.477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042759397
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1083/jcb.146.6.1375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053421534
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1093/bioinformatics/btg173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003492709
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1093/bioinformatics/btg282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050790529
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1093/nar/29.14.2905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034793866
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1128/mcb.23.23.8651-8667.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018312794
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1210/endo.140.6.6751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064283120
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1210/me.2003-0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064327061
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1210/me.2003-0441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064327158
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1210/mend.13.5.0281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064331818
309 rdf:type schema:CreativeWork
310 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
311 schema:name Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
312 Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
313 Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
314 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...