Development and validation of a T7 based linear amplification for genomic DNA View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-12

AUTHORS

Chih Long Liu, Stuart L Schreiber, Bradley E Bernstein

ABSTRACT

BACKGROUND: Genomic maps of transcription factor binding sites and histone modification patterns provide unique insight into the nature of gene regulatory networks and chromatin structure. These systematic studies use microarrays to analyze the composition of DNA isolated by chromatin immunoprecipitation. To obtain quantities sufficient for microarray analysis, the isolated DNA must be amplified. Current protocols use PCR-based approaches to amplify in exponential fashion. However, exponential amplification protocols are highly susceptible to bias. Linear amplification strategies minimize amplification bias and have had a profound impact on mRNA expression analysis. These protocols have yet to be applied to the analysis of genomic DNA due to the lack of a suitable tag such as the polyA tail. RESULTS: We have developed a novel linear amplification protocol for genomic DNA. Terminal transferase is used to add polyT tails to the ends of DNA fragments. Tail length uniformity is ensured by including a limiting concentration of the terminating nucleotide ddCTP. Second strand synthesis using a T7-polyA primer adapter yields double stranded templates suitable for in vitro transcription (IVT). Using this approach, we are able to amplify as little as 2.5 ng of genomic DNA, while retaining the size distribution of the starting material. In contrast, we find that PCR amplification is biased towards species of greater size. Furthermore, extensive microarray-based analyses reveal that our linear amplification protocol preserves dynamic range and species representation more effectively than a commonly used PCR-based approach. CONCLUSION: We present a T7-based linear amplification protocol for genomic DNA. Validation studies and comparisons with existing methods suggest that incorporation of this protocol will reduce amplification bias in genome mapping experiments. More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-4-19

DOI

http://dx.doi.org/10.1186/1471-2164-4-19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049627797

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12740028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteriophage T7", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Amplification Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Chemistry and Chemical Biology, and Howard Hughes Medical Institute, Harvard University, 02138, Cambridge, MA, USA", 
            "Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chih Long", 
        "id": "sg:person.01164363530.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164363530.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Chemistry and Chemical Biology, and Howard Hughes Medical Institute, Harvard University, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Stuart L", 
        "id": "sg:person.01106217250.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106217250.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Chemistry and Chemical Biology, and Howard Hughes Medical Institute, Harvard University, 02138, Cambridge, MA, USA", 
            "Department of Pathology, Brigham and Women's Hospital, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernstein", 
        "givenName": "Bradley E", 
        "id": "sg:person.0724604220.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724604220.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978328", 
          "https://doi.org/10.1038/ng754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978328", 
          "https://doi.org/10.1038/ng754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.949802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012307300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015795488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.1996.0104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016625086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.1996.0104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016625086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(92)90057-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026301614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-3-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029268346", 
          "https://doi.org/10.1186/1471-2164-3-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596378", 
          "https://doi.org/10.1038/35054095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596378", 
          "https://doi.org/10.1038/35054095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.211195798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038572648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/74546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039118746", 
          "https://doi.org/10.1038/74546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/74546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039118746", 
          "https://doi.org/10.1038/74546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040836033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(02)00746-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044217452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046397624", 
          "https://doi.org/10.1038/nbt729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046397624", 
          "https://doi.org/10.1038/nbt729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.21.11383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050209233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.052706999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051173032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.5.e29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051310411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020917223962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052039603", 
          "https://doi.org/10.1023/a:1020917223962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1297-1359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052281386", 
          "https://doi.org/10.1038/nbt1297-1359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082249499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053146671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2002.20.7.1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075022000"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "BACKGROUND: Genomic maps of transcription factor binding sites and histone modification patterns provide unique insight into the nature of gene regulatory networks and chromatin structure. These systematic studies use microarrays to analyze the composition of DNA isolated by chromatin immunoprecipitation. To obtain quantities sufficient for microarray analysis, the isolated DNA must be amplified. Current protocols use PCR-based approaches to amplify in exponential fashion. However, exponential amplification protocols are highly susceptible to bias. Linear amplification strategies minimize amplification bias and have had a profound impact on mRNA expression analysis. These protocols have yet to be applied to the analysis of genomic DNA due to the lack of a suitable tag such as the polyA tail.\nRESULTS: We have developed a novel linear amplification protocol for genomic DNA. Terminal transferase is used to add polyT tails to the ends of DNA fragments. Tail length uniformity is ensured by including a limiting concentration of the terminating nucleotide ddCTP. Second strand synthesis using a T7-polyA primer adapter yields double stranded templates suitable for in vitro transcription (IVT). Using this approach, we are able to amplify as little as 2.5 ng of genomic DNA, while retaining the size distribution of the starting material. In contrast, we find that PCR amplification is biased towards species of greater size. Furthermore, extensive microarray-based analyses reveal that our linear amplification protocol preserves dynamic range and species representation more effectively than a commonly used PCR-based approach.\nCONCLUSION: We present a T7-based linear amplification protocol for genomic DNA. Validation studies and comparisons with existing methods suggest that incorporation of this protocol will reduce amplification bias in genome mapping experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-4-19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Development and validation of a T7 based linear amplification for genomic DNA", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec697a2604744680a28c68aa28d6c03211eda0e4914536c038142e1ba7970123"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12740028"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-4-19"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049627797"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-4-19", 
      "https://app.dimensions.ai/details/publication/pub.1049627797"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-4-19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-4-19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-4-19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-4-19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-4-19'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      59 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-4-19 schema:about N1ecac08542f04aba898675be5eab1d8a
2 N3651f4550518427ebbb1b3aa0bb60703
3 N384faa62ebd14ee280d7b27e791cfcf6
4 N3d59c858d70441c6aaf72ed06a9b4f75
5 N8aaa3280035d4335a873c5c8f96ca9eb
6 Nc416d597eedb4e5cb28668b6fdef879e
7 Ne543198ff0c1411880f1ca21caf26ade
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N5bb0eed1e8bd48b9bc2d771741963e79
11 schema:citation sg:pub.10.1023/a:1020917223962
12 sg:pub.10.1038/35054095
13 sg:pub.10.1038/74546
14 sg:pub.10.1038/nbt1297-1359
15 sg:pub.10.1038/nbt729
16 sg:pub.10.1038/ng569
17 sg:pub.10.1038/ng754
18 sg:pub.10.1186/1471-2164-3-31
19 https://doi.org/10.1006/meth.1996.0104
20 https://doi.org/10.1016/0888-7543(92)90057-y
21 https://doi.org/10.1016/s0092-8674(02)00746-8
22 https://doi.org/10.1073/pnas.052706999
23 https://doi.org/10.1073/pnas.082249499
24 https://doi.org/10.1073/pnas.211195798
25 https://doi.org/10.1073/pnas.95.25.14863
26 https://doi.org/10.1073/pnas.97.21.11383
27 https://doi.org/10.1093/nar/29.5.e29
28 https://doi.org/10.1093/nar/gkg078
29 https://doi.org/10.1101/gad.949802
30 https://doi.org/10.1126/science.1075090
31 https://doi.org/10.1126/science.278.5338.680
32 https://doi.org/10.1126/science.290.5500.2306
33 https://doi.org/10.1200/jco.2002.20.7.1932
34 schema:datePublished 2003-12
35 schema:datePublishedReg 2003-12-01
36 schema:description BACKGROUND: Genomic maps of transcription factor binding sites and histone modification patterns provide unique insight into the nature of gene regulatory networks and chromatin structure. These systematic studies use microarrays to analyze the composition of DNA isolated by chromatin immunoprecipitation. To obtain quantities sufficient for microarray analysis, the isolated DNA must be amplified. Current protocols use PCR-based approaches to amplify in exponential fashion. However, exponential amplification protocols are highly susceptible to bias. Linear amplification strategies minimize amplification bias and have had a profound impact on mRNA expression analysis. These protocols have yet to be applied to the analysis of genomic DNA due to the lack of a suitable tag such as the polyA tail. RESULTS: We have developed a novel linear amplification protocol for genomic DNA. Terminal transferase is used to add polyT tails to the ends of DNA fragments. Tail length uniformity is ensured by including a limiting concentration of the terminating nucleotide ddCTP. Second strand synthesis using a T7-polyA primer adapter yields double stranded templates suitable for in vitro transcription (IVT). Using this approach, we are able to amplify as little as 2.5 ng of genomic DNA, while retaining the size distribution of the starting material. In contrast, we find that PCR amplification is biased towards species of greater size. Furthermore, extensive microarray-based analyses reveal that our linear amplification protocol preserves dynamic range and species representation more effectively than a commonly used PCR-based approach. CONCLUSION: We present a T7-based linear amplification protocol for genomic DNA. Validation studies and comparisons with existing methods suggest that incorporation of this protocol will reduce amplification bias in genome mapping experiments.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N056bd35dba784fe78527aa7c7c44cc38
41 N65312afb597e4c09bfa27186b2e4665a
42 sg:journal.1023790
43 schema:name Development and validation of a T7 based linear amplification for genomic DNA
44 schema:pagination 19
45 schema:productId N1d56e9f027684f22ba680732eb0b584a
46 N49e5e843d994407bb411029947634b1d
47 N51a3f0786286489bb8299beb7e6470cf
48 N7599c2c6075543f68a2cce3d93ec794b
49 Nf6af99353d24487cb1f5c091593b682a
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049627797
51 https://doi.org/10.1186/1471-2164-4-19
52 schema:sdDatePublished 2019-04-10T14:08
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N93ac678bfe504b0e9fed180d131f9302
55 schema:url http://link.springer.com/10.1186%2F1471-2164-4-19
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N056bd35dba784fe78527aa7c7c44cc38 schema:volumeNumber 4
60 rdf:type schema:PublicationVolume
61 N1d56e9f027684f22ba680732eb0b584a schema:name doi
62 schema:value 10.1186/1471-2164-4-19
63 rdf:type schema:PropertyValue
64 N1ecac08542f04aba898675be5eab1d8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Nucleic Acid Hybridization
66 rdf:type schema:DefinedTerm
67 N3651f4550518427ebbb1b3aa0bb60703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name DNA, Fungal
69 rdf:type schema:DefinedTerm
70 N384faa62ebd14ee280d7b27e791cfcf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Saccharomyces cerevisiae
72 rdf:type schema:DefinedTerm
73 N3d59c858d70441c6aaf72ed06a9b4f75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name DNA, Viral
75 rdf:type schema:DefinedTerm
76 N49e5e843d994407bb411029947634b1d schema:name nlm_unique_id
77 schema:value 100965258
78 rdf:type schema:PropertyValue
79 N51a3f0786286489bb8299beb7e6470cf schema:name pubmed_id
80 schema:value 12740028
81 rdf:type schema:PropertyValue
82 N5bb0eed1e8bd48b9bc2d771741963e79 rdf:first sg:person.01164363530.94
83 rdf:rest Ndc900b718c4841d8bd770ef88055f36b
84 N65312afb597e4c09bfa27186b2e4665a schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N7599c2c6075543f68a2cce3d93ec794b schema:name readcube_id
87 schema:value ec697a2604744680a28c68aa28d6c03211eda0e4914536c038142e1ba7970123
88 rdf:type schema:PropertyValue
89 N8aaa3280035d4335a873c5c8f96ca9eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Bacteriophage T7
91 rdf:type schema:DefinedTerm
92 N93ac678bfe504b0e9fed180d131f9302 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nc24a72c4342c48d8861dccedd08cbb5e rdf:first sg:person.0724604220.48
95 rdf:rest rdf:nil
96 Nc416d597eedb4e5cb28668b6fdef879e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Nucleic Acid Amplification Techniques
98 rdf:type schema:DefinedTerm
99 Ndc900b718c4841d8bd770ef88055f36b rdf:first sg:person.01106217250.35
100 rdf:rest Nc24a72c4342c48d8861dccedd08cbb5e
101 Ne543198ff0c1411880f1ca21caf26ade schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name DNA Primers
103 rdf:type schema:DefinedTerm
104 Nf6af99353d24487cb1f5c091593b682a schema:name dimensions_id
105 schema:value pub.1049627797
106 rdf:type schema:PropertyValue
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
111 schema:name Genetics
112 rdf:type schema:DefinedTerm
113 sg:journal.1023790 schema:issn 1471-2164
114 schema:name BMC Genomics
115 rdf:type schema:Periodical
116 sg:person.01106217250.35 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
117 schema:familyName Schreiber
118 schema:givenName Stuart L
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106217250.35
120 rdf:type schema:Person
121 sg:person.01164363530.94 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
122 schema:familyName Liu
123 schema:givenName Chih Long
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164363530.94
125 rdf:type schema:Person
126 sg:person.0724604220.48 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
127 schema:familyName Bernstein
128 schema:givenName Bradley E
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724604220.48
130 rdf:type schema:Person
131 sg:pub.10.1023/a:1020917223962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052039603
132 https://doi.org/10.1023/a:1020917223962
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35054095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037596378
135 https://doi.org/10.1038/35054095
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/74546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039118746
138 https://doi.org/10.1038/74546
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nbt1297-1359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052281386
141 https://doi.org/10.1038/nbt1297-1359
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nbt729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046397624
144 https://doi.org/10.1038/nbt729
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ng569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056459183
147 https://doi.org/10.1038/ng569
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ng754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010978328
150 https://doi.org/10.1038/ng754
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/1471-2164-3-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029268346
153 https://doi.org/10.1186/1471-2164-3-31
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1006/meth.1996.0104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016625086
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0888-7543(92)90057-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026301614
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0092-8674(02)00746-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044217452
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.052706999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051173032
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.082249499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053146671
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.211195798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038572648
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.97.21.11383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050209233
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/29.5.e29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051310411
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/gkg078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015795488
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1101/gad.949802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012307300
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.290.5500.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040836033
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1200/jco.2002.20.7.1932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075022000
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
186 schema:name Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, 02115, Boston, MA, USA
187 Department of Chemistry and Chemical Biology, and Howard Hughes Medical Institute, Harvard University, 02138, Cambridge, MA, USA
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
190 schema:name Department of Chemistry and Chemical Biology, and Howard Hughes Medical Institute, Harvard University, 02138, Cambridge, MA, USA
191 Department of Pathology, Brigham and Women's Hospital, 02115, Boston, MA, USA
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...