Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Adam Frankish, Barbara Uszczynska, Graham RS Ritchie, Jose M Gonzalez, Dmitri Pervouchine, Robert Petryszak, Jonathan M Mudge, Nuno Fonseca, Alvis Brazma, Roderic Guigo, Jennifer Harrow

ABSTRACT

BACKGROUND: A vast amount of DNA variation is being identified by increasingly large-scale exome and genome sequencing projects. To be useful, variants require accurate functional annotation and a wide range of tools are available to this end. McCarthy et al recently demonstrated the large differences in prediction of loss-of-function (LoF) variation when RefSeq and Ensembl transcripts are used for annotation, highlighting the importance of the reference transcripts on which variant functional annotation is based. RESULTS: We describe a detailed analysis of the similarities and differences between the gene and transcript annotation in the GENCODE and RefSeq genesets. We demonstrate that the GENCODE Comprehensive set is richer in alternative splicing, novel CDSs, novel exons and has higher genomic coverage than RefSeq, while the GENCODE Basic set is very similar to RefSeq. Using RNAseq data we show that exons and introns unique to one geneset are expressed at a similar level to those common to both. We present evidence that the differences in gene annotation lead to large differences in variant annotation where GENCODE and RefSeq are used as reference transcripts, although this is predominantly confined to non-coding transcripts and UTR sequence, with at most ~30% of LoF variants annotated discordantly. We also describe an investigation of dominant transcript expression, showing that it both supports the utility of the GENCODE Basic set in providing a smaller set of more highly expressed transcripts and provides a useful, biologically-relevant filter for further reducing the complexity of the transcriptome. CONCLUSIONS: The reference transcripts selected for variant functional annotation do have a large effect on the outcome. The GENCODE Comprehensive transcripts contain more exons, have greater genomic coverage and capture many more variants than RefSeq in both genome and exome datasets, while the GENCODE Basic set shows a higher degree of concordance with RefSeq and has fewer unique features. We propose that the GENCODE Comprehensive set has great utility for the discovery of new variants with functional potential, while the GENCODE Basic set is more suitable for applications demanding less complex interpretation of functional variants. More... »

PAGES

s2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-16-s8-s2

DOI

http://dx.doi.org/10.1186/1471-2164-16-s8-s2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047556219

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26110515


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Isoforms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frankish", 
        "givenName": "Adam", 
        "id": "sg:person.0736671011.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736671011.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Centre for Genomic Regulation, Barcelona, Catalonia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uszczynska", 
        "givenName": "Barbara", 
        "id": "sg:person.01062021607.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062021607.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK", 
            "European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritchie", 
        "givenName": "Graham RS", 
        "id": "sg:person.01322341207.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322341207.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "Jose M", 
        "id": "sg:person.01176700005.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176700005.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Centre for Genomic Regulation, Barcelona, Catalonia, Spain", 
            "Faculty of Bioengineering and Bioinformatics, 119992 Moscow GSP-2, Leninskie Gory, Moscow State University 1-73, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pervouchine", 
        "givenName": "Dmitri", 
        "id": "sg:person.0700550417.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700550417.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petryszak", 
        "givenName": "Robert", 
        "id": "sg:person.0740734727.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740734727.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mudge", 
        "givenName": "Jonathan M", 
        "id": "sg:person.01147746215.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147746215.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fonseca", 
        "givenName": "Nuno", 
        "id": "sg:person.014505033160.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014505033160.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brazma", 
        "givenName": "Alvis", 
        "id": "sg:person.01301046330.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301046330.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Centre for Genomic Regulation, Barcelona, Catalonia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guigo", 
        "givenName": "Roderic", 
        "id": "sg:person.01347214467.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347214467.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrow", 
        "givenName": "Jennifer", 
        "id": "sg:person.013015267207.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015267207.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661742", 
          "https://doi.org/10.1038/nature11632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001009858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-s1-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630706", 
          "https://doi.org/10.1186/gb-2006-7-s1-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005913886", 
          "https://doi.org/10.1038/nature05874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.13.3.1892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007061108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008701542", 
          "https://doi.org/10.1038/nature11690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009243267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.135350.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012073457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.21545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012452060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.06.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014809370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2009.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015642657", 
          "https://doi.org/10.1038/nprot.2009.86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016504892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019560446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020055265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022792016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1932072100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024489496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024699934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024961899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.177790.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025111567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029002744", 
          "https://doi.org/10.1038/nature07509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065430", 
          "https://doi.org/10.1038/nature11247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmedgenet-2014-102405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030998120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1219240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037292390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1219240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037292390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037446228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-13-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039194470", 
          "https://doi.org/10.1186/1476-4598-13-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039764104", 
          "https://doi.org/10.1186/gm543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040148852", 
          "https://doi.org/10.1038/ncomms3260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045151982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047117020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.134478.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047337579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matbio.2011.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049204822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-s1-s12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050280568", 
          "https://doi.org/10.1186/gb-2006-7-s1-s12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.123158.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050710497"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: A vast amount of DNA variation is being identified by increasingly large-scale exome and genome sequencing projects. To be useful, variants require accurate functional annotation and a wide range of tools are available to this end. McCarthy et al recently demonstrated the large differences in prediction of loss-of-function (LoF) variation when RefSeq and Ensembl transcripts are used for annotation, highlighting the importance of the reference transcripts on which variant functional annotation is based.\nRESULTS: We describe a detailed analysis of the similarities and differences between the gene and transcript annotation in the GENCODE and RefSeq genesets. We demonstrate that the GENCODE Comprehensive set is richer in alternative splicing, novel CDSs, novel exons and has higher genomic coverage than RefSeq, while the GENCODE Basic set is very similar to RefSeq. Using RNAseq data we show that exons and introns unique to one geneset are expressed at a similar level to those common to both. We present evidence that the differences in gene annotation lead to large differences in variant annotation where GENCODE and RefSeq are used as reference transcripts, although this is predominantly confined to non-coding transcripts and UTR sequence, with at most ~30% of LoF variants annotated discordantly. We also describe an investigation of dominant transcript expression, showing that it both supports the utility of the GENCODE Basic set in providing a smaller set of more highly expressed transcripts and provides a useful, biologically-relevant filter for further reducing the complexity of the transcriptome.\nCONCLUSIONS: The reference transcripts selected for variant functional annotation do have a large effect on the outcome. The GENCODE Comprehensive transcripts contain more exons, have greater genomic coverage and capture many more variants than RefSeq in both genome and exome datasets, while the GENCODE Basic set shows a higher degree of concordance with RefSeq and has fewer unique features. We propose that the GENCODE Comprehensive set has great utility for the discovery of new variants with functional potential, while the GENCODE Basic set is more suitable for applications demanding less complex interpretation of functional variants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-16-s8-s2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699372", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2697615", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2697617", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction", 
    "pagination": "s2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e28b28d150a462ef8e91827fa9c4c144254203e6d8721ce09f1c01c39cbadc18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26110515"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-16-s8-s2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047556219"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-16-s8-s2", 
      "https://app.dimensions.ai/details/publication/pub.1047556219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-16-S8-S2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s8-s2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s8-s2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s8-s2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s8-s2'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      73 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-16-s8-s2 schema:about N22929183789447589f1f84b3abc2acb8
2 N31f48ec51f5148a18224160068df80e1
3 N32447fdbd3594283963f63b144e0b7e4
4 N4376e3d2c4bc417eb28b46dd0e4601d5
5 N7d7a6b24ce0b45378754f52c9da49629
6 Nb8d01df135cd4430a02a7e97232c9bd4
7 Ncc5aad225f8142cba62bcfa7b1fb1f88
8 Nd3c1f2d6143b49bb9499840617e08f09
9 Ndddfa773ae1d466f9debb100a7ce1abb
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Nf9d6d0db1544423b8e0ad3cddd6f996a
13 schema:citation sg:pub.10.1038/nature05874
14 sg:pub.10.1038/nature07509
15 sg:pub.10.1038/nature11247
16 sg:pub.10.1038/nature11632
17 sg:pub.10.1038/nature11690
18 sg:pub.10.1038/ncomms3260
19 sg:pub.10.1038/nmeth0410-248
20 sg:pub.10.1038/nprot.2009.86
21 sg:pub.10.1186/1476-4598-13-87
22 sg:pub.10.1186/gb-2006-7-s1-s12
23 sg:pub.10.1186/gb-2006-7-s1-s4
24 sg:pub.10.1186/gm543
25 https://doi.org/10.1002/humu.21545
26 https://doi.org/10.1016/j.cell.2013.06.052
27 https://doi.org/10.1016/j.matbio.2011.05.001
28 https://doi.org/10.1073/pnas.1932072100
29 https://doi.org/10.1093/bioinformatics/btl116
30 https://doi.org/10.1093/bioinformatics/btq330
31 https://doi.org/10.1093/bioinformatics/btr209
32 https://doi.org/10.1093/bioinformatics/bts368
33 https://doi.org/10.1093/nar/gkq603
34 https://doi.org/10.1093/nar/gks1058
35 https://doi.org/10.1093/nar/gkt1082
36 https://doi.org/10.1093/nar/gkt1114
37 https://doi.org/10.1093/nar/gkt1140
38 https://doi.org/10.1093/nar/gkt1241
39 https://doi.org/10.1093/nar/gku1010
40 https://doi.org/10.1101/gr.123158.111
41 https://doi.org/10.1101/gr.134478.111
42 https://doi.org/10.1101/gr.135350.111
43 https://doi.org/10.1101/gr.177790.114
44 https://doi.org/10.1101/gr.229102
45 https://doi.org/10.1126/science.1219240
46 https://doi.org/10.1128/mcb.13.3.1892
47 https://doi.org/10.1136/jmedgenet-2014-102405
48 schema:datePublished 2015-12
49 schema:datePublishedReg 2015-12-01
50 schema:description BACKGROUND: A vast amount of DNA variation is being identified by increasingly large-scale exome and genome sequencing projects. To be useful, variants require accurate functional annotation and a wide range of tools are available to this end. McCarthy et al recently demonstrated the large differences in prediction of loss-of-function (LoF) variation when RefSeq and Ensembl transcripts are used for annotation, highlighting the importance of the reference transcripts on which variant functional annotation is based. RESULTS: We describe a detailed analysis of the similarities and differences between the gene and transcript annotation in the GENCODE and RefSeq genesets. We demonstrate that the GENCODE Comprehensive set is richer in alternative splicing, novel CDSs, novel exons and has higher genomic coverage than RefSeq, while the GENCODE Basic set is very similar to RefSeq. Using RNAseq data we show that exons and introns unique to one geneset are expressed at a similar level to those common to both. We present evidence that the differences in gene annotation lead to large differences in variant annotation where GENCODE and RefSeq are used as reference transcripts, although this is predominantly confined to non-coding transcripts and UTR sequence, with at most ~30% of LoF variants annotated discordantly. We also describe an investigation of dominant transcript expression, showing that it both supports the utility of the GENCODE Basic set in providing a smaller set of more highly expressed transcripts and provides a useful, biologically-relevant filter for further reducing the complexity of the transcriptome. CONCLUSIONS: The reference transcripts selected for variant functional annotation do have a large effect on the outcome. The GENCODE Comprehensive transcripts contain more exons, have greater genomic coverage and capture many more variants than RefSeq in both genome and exome datasets, while the GENCODE Basic set shows a higher degree of concordance with RefSeq and has fewer unique features. We propose that the GENCODE Comprehensive set has great utility for the discovery of new variants with functional potential, while the GENCODE Basic set is more suitable for applications demanding less complex interpretation of functional variants.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Naba71bb145ef4ede97bee4bd40c3f5ed
55 Neb7bf540391c41f9aa7978cc2edc1b2c
56 sg:journal.1023790
57 schema:name Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction
58 schema:pagination s2
59 schema:productId N737863d6d0614345b7df55bcc7573a87
60 N75738b1d086c41ab95d15a3d6daf4e9e
61 Nceeb2016edfa4a9484e56eeb690cbbcc
62 Ne290c54898ce4831a0b7b3163d4111bf
63 Nf3926a28d1d8464a892acf1d4d17a613
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047556219
65 https://doi.org/10.1186/1471-2164-16-s8-s2
66 schema:sdDatePublished 2019-04-10T17:30
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N3238db78c16a419ab034473da4035e75
69 schema:url http://link.springer.com/10.1186%2F1471-2164-16-S8-S2
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0a3a48f419aa484b938c1b13b336231e rdf:first sg:person.014505033160.22
74 rdf:rest N49d5019915cd4a78975193778e75480f
75 N0f714832a48f43db996a4ecfe672d4aa rdf:first sg:person.01347214467.09
76 rdf:rest Nd2102a0a777d45989c9dc9b32883b085
77 N1f84527069a84030a4309b89353368a1 rdf:first sg:person.0700550417.66
78 rdf:rest N34013f8856594365b14fed807ccd1f77
79 N22929183789447589f1f84b3abc2acb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Protein Isoforms
81 rdf:type schema:DefinedTerm
82 N31f48ec51f5148a18224160068df80e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Software
84 rdf:type schema:DefinedTerm
85 N3238db78c16a419ab034473da4035e75 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N32447fdbd3594283963f63b144e0b7e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Molecular Sequence Annotation
89 rdf:type schema:DefinedTerm
90 N34013f8856594365b14fed807ccd1f77 rdf:first sg:person.0740734727.80
91 rdf:rest Na294ceec2035481d9583bb7e92a20c1a
92 N4376e3d2c4bc417eb28b46dd0e4601d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Humans
94 rdf:type schema:DefinedTerm
95 N49d5019915cd4a78975193778e75480f rdf:first sg:person.01301046330.10
96 rdf:rest N0f714832a48f43db996a4ecfe672d4aa
97 N737863d6d0614345b7df55bcc7573a87 schema:name pubmed_id
98 schema:value 26110515
99 rdf:type schema:PropertyValue
100 N75738b1d086c41ab95d15a3d6daf4e9e schema:name readcube_id
101 schema:value e28b28d150a462ef8e91827fa9c4c144254203e6d8721ce09f1c01c39cbadc18
102 rdf:type schema:PropertyValue
103 N7d7a6b24ce0b45378754f52c9da49629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Computational Biology
105 rdf:type schema:DefinedTerm
106 Na294ceec2035481d9583bb7e92a20c1a rdf:first sg:person.01147746215.71
107 rdf:rest N0a3a48f419aa484b938c1b13b336231e
108 Na817f0eaf798431c8830b37451f51425 rdf:first sg:person.01322341207.34
109 rdf:rest Nb1284381a4f5424a9f03863ac719d16b
110 Naba71bb145ef4ede97bee4bd40c3f5ed schema:issueNumber Suppl 8
111 rdf:type schema:PublicationIssue
112 Nb1284381a4f5424a9f03863ac719d16b rdf:first sg:person.01176700005.01
113 rdf:rest N1f84527069a84030a4309b89353368a1
114 Nb8d01df135cd4430a02a7e97232c9bd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Transcriptome
116 rdf:type schema:DefinedTerm
117 Ncc5aad225f8142cba62bcfa7b1fb1f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Alternative Splicing
119 rdf:type schema:DefinedTerm
120 Nceeb2016edfa4a9484e56eeb690cbbcc schema:name nlm_unique_id
121 schema:value 100965258
122 rdf:type schema:PropertyValue
123 Nd2102a0a777d45989c9dc9b32883b085 rdf:first sg:person.013015267207.78
124 rdf:rest rdf:nil
125 Nd3c1f2d6143b49bb9499840617e08f09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Databases, Genetic
127 rdf:type schema:DefinedTerm
128 Nd4c98440c7a043f7922d2bc955e12942 rdf:first sg:person.01062021607.93
129 rdf:rest Na817f0eaf798431c8830b37451f51425
130 Ndddfa773ae1d466f9debb100a7ce1abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Genome, Human
132 rdf:type schema:DefinedTerm
133 Ne290c54898ce4831a0b7b3163d4111bf schema:name dimensions_id
134 schema:value pub.1047556219
135 rdf:type schema:PropertyValue
136 Neb7bf540391c41f9aa7978cc2edc1b2c schema:volumeNumber 16
137 rdf:type schema:PublicationVolume
138 Nf3926a28d1d8464a892acf1d4d17a613 schema:name doi
139 schema:value 10.1186/1471-2164-16-s8-s2
140 rdf:type schema:PropertyValue
141 Nf9d6d0db1544423b8e0ad3cddd6f996a rdf:first sg:person.0736671011.81
142 rdf:rest Nd4c98440c7a043f7922d2bc955e12942
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
147 schema:name Genetics
148 rdf:type schema:DefinedTerm
149 sg:grant.2697615 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-16-s8-s2
150 rdf:type schema:MonetaryGrant
151 sg:grant.2697617 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-16-s8-s2
152 rdf:type schema:MonetaryGrant
153 sg:grant.2699372 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-16-s8-s2
154 rdf:type schema:MonetaryGrant
155 sg:journal.1023790 schema:issn 1471-2164
156 schema:name BMC Genomics
157 rdf:type schema:Periodical
158 sg:person.01062021607.93 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
159 schema:familyName Uszczynska
160 schema:givenName Barbara
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062021607.93
162 rdf:type schema:Person
163 sg:person.01147746215.71 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
164 schema:familyName Mudge
165 schema:givenName Jonathan M
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147746215.71
167 rdf:type schema:Person
168 sg:person.01176700005.01 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
169 schema:familyName Gonzalez
170 schema:givenName Jose M
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176700005.01
172 rdf:type schema:Person
173 sg:person.01301046330.10 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
174 schema:familyName Brazma
175 schema:givenName Alvis
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301046330.10
177 rdf:type schema:Person
178 sg:person.013015267207.78 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
179 schema:familyName Harrow
180 schema:givenName Jennifer
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015267207.78
182 rdf:type schema:Person
183 sg:person.01322341207.34 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
184 schema:familyName Ritchie
185 schema:givenName Graham RS
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322341207.34
187 rdf:type schema:Person
188 sg:person.01347214467.09 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
189 schema:familyName Guigo
190 schema:givenName Roderic
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347214467.09
192 rdf:type schema:Person
193 sg:person.014505033160.22 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
194 schema:familyName Fonseca
195 schema:givenName Nuno
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014505033160.22
197 rdf:type schema:Person
198 sg:person.0700550417.66 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
199 schema:familyName Pervouchine
200 schema:givenName Dmitri
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700550417.66
202 rdf:type schema:Person
203 sg:person.0736671011.81 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
204 schema:familyName Frankish
205 schema:givenName Adam
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736671011.81
207 rdf:type schema:Person
208 sg:person.0740734727.80 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
209 schema:familyName Petryszak
210 schema:givenName Robert
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740734727.80
212 rdf:type schema:Person
213 sg:pub.10.1038/nature05874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913886
214 https://doi.org/10.1038/nature05874
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
217 https://doi.org/10.1038/nature07509
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
220 https://doi.org/10.1038/nature11247
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
223 https://doi.org/10.1038/nature11632
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nature11690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008701542
226 https://doi.org/10.1038/nature11690
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ncomms3260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040148852
229 https://doi.org/10.1038/ncomms3260
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nmeth0410-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489634
232 https://doi.org/10.1038/nmeth0410-248
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nprot.2009.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642657
235 https://doi.org/10.1038/nprot.2009.86
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1476-4598-13-87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039194470
238 https://doi.org/10.1186/1476-4598-13-87
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/gb-2006-7-s1-s12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050280568
241 https://doi.org/10.1186/gb-2006-7-s1-s12
242 rdf:type schema:CreativeWork
243 sg:pub.10.1186/gb-2006-7-s1-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630706
244 https://doi.org/10.1186/gb-2006-7-s1-s4
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/gm543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039764104
247 https://doi.org/10.1186/gm543
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1002/humu.21545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012452060
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.cell.2013.06.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014809370
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.matbio.2011.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049204822
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.1932072100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024489496
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/bioinformatics/btl116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045151982
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/bioinformatics/btq330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117020
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/bioinformatics/btr209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009243267
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/bioinformatics/bts368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001009858
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/nar/gks1058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019560446
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/nar/gkt1082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016504892
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/nar/gkt1114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024961899
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1093/nar/gkt1140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020055265
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1093/nar/gkt1241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024699934
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1093/nar/gku1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037446228
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1101/gr.123158.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710497
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1101/gr.134478.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047337579
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1101/gr.135350.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073457
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1101/gr.177790.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025111567
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1101/gr.229102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792016
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1126/science.1219240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037292390
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1128/mcb.13.3.1892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007061108
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1136/jmedgenet-2014-102405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030998120
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
296 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.11478.3b schema:alternateName Centre for Genomic Regulation
299 schema:name Centre for Genomic Regulation, Barcelona, Catalonia, Spain
300 Faculty of Bioengineering and Bioinformatics, 119992 Moscow GSP-2, Leninskie Gory, Moscow State University 1-73, Russia
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
303 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK
304 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...