A novel analysis strategy for integrating methylation and expression data reveals core pathways for thyroid cancer aetiology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Bugra Ozer, Osman Uğur Sezerman

ABSTRACT

BACKGROUND: Recently, a wide range of diseases have been associated with changes in DNA methylation levels, which play a vital role in gene expression regulation. With ongoing developments in technology, attempts to understand disease mechanism have benefited greatly from epigenetics and transcriptomics studies. In this work, we have used expression and methylation data of thyroid carcinoma as a case study and explored how to optimally incorporate expression and methylation information into the disease study when both data are available. Moreover, we have also investigated whether there are important post-translational modifiers which could drive critical insights on thyroid cancer genetics. RESULTS: In this study, we have conducted a threshold analysis for varying methylation levels to identify whether setting a methylation level threshold increases the performance of functional enrichment. Moreover, in order to decide on best-performing analysis strategy, we have performed data integration analysis including comparison of 10 different analysis strategies. As a result, combining methylation with expression and using genes with more than 15% methylation change led to optimal detection rate of thyroid-cancer associated pathways in top 20 functional enrichment results. Furthermore, pooling the data from different experiments increased analysis confidence by improving the data range. Consequently, we have identified 207 transcription factors and 245 post-translational modifiers with more than 15% methylation change which may be important in understanding underlying mechanisms of thyroid cancer. CONCLUSION: While only expression or only methylation information would not reveal both primary and secondary mechanisms involved in disease state, combining expression and methylation led to a better detection of thyroid cancer-related genes and pathways that are found in the recent literature. Moreover, focusing on genes that have certain level of methylation change improved the functional enrichment results, revealing the core pathways involved in disease development such as; endocytosis, apoptosis, glutamatergic synapse, MAPK, ErbB, TGF-beta and Toll-like receptor pathways. Overall, in addition to novel analysis framework, our study reveals important thyroid-cancer related mechanisms, secondary molecular alterations and contributes to better knowledge of thyroid cancer aetiology. More... »

PAGES

s7

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2002-07. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer in NATURE REVIEWS CANCER
  • 2011-12. Qualitative and quantitative promoter hypermethylation patterns of the P16, TSHR, RASSF1A and RARβ2 genes in papillary thyroid carcinoma in MEDICAL ONCOLOGY
  • 2002-06. The fundamental role of epigenetic events in cancer in NATURE REVIEWS GENETICS
  • 2009-01. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources in NATURE PROTOCOLS
  • 2014-08. DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy in BRITISH JOURNAL OF CANCER
  • 2009-03. TFCat: the curated catalog of mouse and human transcription factors in GENOME BIOLOGY
  • 1996-01. Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer in ANNALS OF SURGICAL ONCOLOGY
  • 2004-09. Combinatorial control of gene expression in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2013-03. Molecular pathogenesis and mechanisms of thyroid cancer in NATURE REVIEWS CANCER
  • 2010-12. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis in BMC BIOINFORMATICS
  • 2006-02. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? in NATURE REVIEWS CANCER
  • 2011-06. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study in MODERN PATHOLOGY
  • 2002-10. Transcription factors as targets for cancer therapy in NATURE REVIEWS CANCER
  • 2009-12. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer in BMC MEDICAL GENOMICS
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s7

    DOI

    http://dx.doi.org/10.1186/1471-2164-16-s12-s7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019634277

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26678064


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thyroid Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scientific and Technological Research Council of Turkey", 
              "id": "https://www.grid.ac/institutes/grid.426409.d", 
              "name": [
                "Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey", 
                "Advanced Genomics and Bioinformatics Research Center (IGBAM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Gebze, Kocaeli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ozer", 
            "givenName": "Bugra", 
            "id": "sg:person.01244434463.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434463.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ac\u0131badem University", 
              "id": "https://www.grid.ac/institutes/grid.411117.3", 
              "name": [
                "Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ac\u0131badem University, 34752, Ata\u015fehir, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sezerman", 
            "givenName": "Osman U\u011fur", 
            "id": "sg:person.01361520752.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361520752.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1755-8794-2-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001301177", 
              "https://doi.org/10.1186/1755-8794-2-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12032-010-9587-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331645", 
              "https://doi.org/10.1007/s12032-010-9587-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.it.2004.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003271388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005022195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005702432", 
              "https://doi.org/10.1038/nsmb820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005702432", 
              "https://doi.org/10.1038/nsmb820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.09.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006907054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.09.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006907054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.devcel.2008.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008314667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci112032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008945160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009089021", 
              "https://doi.org/10.1038/nrc3431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012366359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1593/tlo.12442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012504395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014023118", 
              "https://doi.org/10.1038/nrc839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014023118", 
              "https://doi.org/10.1038/nrc839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2009.04.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014164862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2013.00271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015985140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxj037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016217055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1600-0854.2008.00816.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016314101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1530/eje.1.02009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017563052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuro.2012.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020140498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc.1.01226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020287585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc.1.01226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020287585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.8.4540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020321413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022039800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/95.8.625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022322958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024677703", 
              "https://doi.org/10.1186/gb-2009-10-3-r29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2014.337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024855110", 
              "https://doi.org/10.1038/bjc.2014.337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000220827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024920955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025448148", 
              "https://doi.org/10.1186/1471-2105-11-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fendo.2012.00031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027511838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/carcin/21.3.485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031234392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)81683-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031899717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033224422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034923242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc.1.01223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035909561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2014.10.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036530097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2014.10.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036530097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/mcp.r600009-mcp200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037579448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038177541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039987283", 
              "https://doi.org/10.1038/nprot.2008.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-2952(02)01218-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040377118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm200102153440707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041095379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041169608", 
              "https://doi.org/10.1038/nrc1799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041169608", 
              "https://doi.org/10.1038/nrc1799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2012.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043304343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046543214", 
              "https://doi.org/10.1038/nrc906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046543214", 
              "https://doi.org/10.1038/nrc906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1182/blood-2013-07-512855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046575500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02409059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047357740", 
              "https://doi.org/10.1007/bf02409059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02409059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047357740", 
              "https://doi.org/10.1007/bf02409059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-03-3242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048163146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2011.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048358785", 
              "https://doi.org/10.1038/modpathol.2011.3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ceb.2009.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049633755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1239303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052744398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052883861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1420-9101.2011.02297.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052886192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053491434", 
              "https://doi.org/10.1038/nrg816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053491434", 
              "https://doi.org/10.1038/nrg816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/thy.2005.15.531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059319565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/thy.2007.0303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059320151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2002.10.088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064203153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/en.2005-0280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064247389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2005-0313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064288368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2006-2157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064289625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2012-3566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064293949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jcem.87.3.8345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064325049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075114599", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075192414", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078762495", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2390/biecoll-jib-2014-236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078931067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081849876", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: Recently, a wide range of diseases have been associated with changes in DNA methylation levels, which play a vital role in gene expression regulation. With ongoing developments in technology, attempts to understand disease mechanism have benefited greatly from epigenetics and transcriptomics studies. In this work, we have used expression and methylation data of thyroid carcinoma as a case study and explored how to optimally incorporate expression and methylation information into the disease study when both data are available. Moreover, we have also investigated whether there are important post-translational modifiers which could drive critical insights on thyroid cancer genetics.\nRESULTS: In this study, we have conducted a threshold analysis for varying methylation levels to identify whether setting a methylation level threshold increases the performance of functional enrichment. Moreover, in order to decide on best-performing analysis strategy, we have performed data integration analysis including comparison of 10 different analysis strategies. As a result, combining methylation with expression and using genes with more than 15% methylation change led to optimal detection rate of thyroid-cancer associated pathways in top 20 functional enrichment results. Furthermore, pooling the data from different experiments increased analysis confidence by improving the data range. Consequently, we have identified 207 transcription factors and 245 post-translational modifiers with more than 15% methylation change which may be important in understanding underlying mechanisms of thyroid cancer.\nCONCLUSION: While only expression or only methylation information would not reveal both primary and secondary mechanisms involved in disease state, combining expression and methylation led to a better detection of thyroid cancer-related genes and pathways that are found in the recent literature. Moreover, focusing on genes that have certain level of methylation change improved the functional enrichment results, revealing the core pathways involved in disease development such as; endocytosis, apoptosis, glutamatergic synapse, MAPK, ErbB, TGF-beta and Toll-like receptor pathways. Overall, in addition to novel analysis framework, our study reveals important thyroid-cancer related mechanisms, secondary molecular alterations and contributes to better knowledge of thyroid cancer aetiology.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2164-16-s12-s7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "A novel analysis strategy for integrating methylation and expression data reveals core pathways for thyroid cancer aetiology", 
        "pagination": "s7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5d8c189075c45cb3a97499f9b7a80d611b388f8f7868aa6a4815841d90e1446c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26678064"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-16-s12-s7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019634277"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-16-s12-s7", 
          "https://app.dimensions.ai/details/publication/pub.1019634277"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000550.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2164-16-S12-S7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    329 TRIPLES      21 PREDICATES      105 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-16-s12-s7 schema:about N0b58f2476a09410f824b6c9f38de769f
    2 N149a071288db46808b3be3b7c9e5ffd8
    3 N2326910624ed4f0bb90332f8087419f2
    4 N39d493d019564d90be3527fc92e28632
    5 N54b463035da6408a88e6f8f797d23005
    6 N8ebfc4187c164c9381e3e805a7f2f61c
    7 Nbb58a9c44d0146c5a3e8463a7537f9f9
    8 Nc6aa1ee73ee6440bae85c5370e3a1c44
    9 Nd6de8bc35178486dba2577a34a640ab4
    10 Neea15a650173488ba261ef304fbfe081
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N17ac6088d7794f2d8cac0f0c4a317737
    14 schema:citation sg:pub.10.1007/bf02409059
    15 sg:pub.10.1007/s12032-010-9587-z
    16 sg:pub.10.1038/75556
    17 sg:pub.10.1038/bjc.2014.337
    18 sg:pub.10.1038/modpathol.2011.3
    19 sg:pub.10.1038/nprot.2008.211
    20 sg:pub.10.1038/nrc1799
    21 sg:pub.10.1038/nrc3431
    22 sg:pub.10.1038/nrc839
    23 sg:pub.10.1038/nrc906
    24 sg:pub.10.1038/nrg816
    25 sg:pub.10.1038/nsmb820
    26 sg:pub.10.1186/1471-2105-11-587
    27 sg:pub.10.1186/1755-8794-2-34
    28 sg:pub.10.1186/gb-2004-5-10-r80
    29 sg:pub.10.1186/gb-2009-10-3-r29
    30 https://app.dimensions.ai/details/publication/pub.1075114599
    31 https://app.dimensions.ai/details/publication/pub.1075192414
    32 https://app.dimensions.ai/details/publication/pub.1078762495
    33 https://app.dimensions.ai/details/publication/pub.1081849876
    34 https://doi.org/10.1016/j.bbrc.2009.04.023
    35 https://doi.org/10.1016/j.ceb.2009.01.013
    36 https://doi.org/10.1016/j.cell.2014.09.050
    37 https://doi.org/10.1016/j.devcel.2008.05.009
    38 https://doi.org/10.1016/j.it.2004.05.003
    39 https://doi.org/10.1016/j.jbi.2012.07.008
    40 https://doi.org/10.1016/j.neuro.2012.06.008
    41 https://doi.org/10.1016/j.ymeth.2014.10.036
    42 https://doi.org/10.1016/s0006-2952(02)01218-2
    43 https://doi.org/10.1016/s0092-8674(00)81683-9
    44 https://doi.org/10.1056/nejm200102153440707
    45 https://doi.org/10.1073/pnas.96.8.4540
    46 https://doi.org/10.1074/mcp.r600009-mcp200
    47 https://doi.org/10.1089/thy.2005.15.531
    48 https://doi.org/10.1089/thy.2007.0303
    49 https://doi.org/10.1093/bioinformatics/18.suppl_1.s233
    50 https://doi.org/10.1093/bioinformatics/btp616
    51 https://doi.org/10.1093/bioinformatics/btr511
    52 https://doi.org/10.1093/bioinformatics/bts680
    53 https://doi.org/10.1093/bioinformatics/btt743
    54 https://doi.org/10.1093/biostatistics/kxj037
    55 https://doi.org/10.1093/carcin/21.3.485
    56 https://doi.org/10.1093/jnci/95.8.625
    57 https://doi.org/10.1093/nar/gks1055
    58 https://doi.org/10.1093/nar/gku1151
    59 https://doi.org/10.1101/gr.1239303
    60 https://doi.org/10.1111/j.1420-9101.2011.02297.x
    61 https://doi.org/10.1111/j.1600-0854.2008.00816.x
    62 https://doi.org/10.1158/0008-5472.can-03-3242
    63 https://doi.org/10.1159/000220827
    64 https://doi.org/10.1172/jci112032
    65 https://doi.org/10.1182/blood-2013-07-512855
    66 https://doi.org/10.1200/jco.2002.10.088
    67 https://doi.org/10.1210/en.2005-0280
    68 https://doi.org/10.1210/jc.2005-0313
    69 https://doi.org/10.1210/jc.2006-2157
    70 https://doi.org/10.1210/jc.2012-3566
    71 https://doi.org/10.1210/jcem.87.3.8345
    72 https://doi.org/10.1371/journal.pgen.1002454
    73 https://doi.org/10.1530/eje.1.02009
    74 https://doi.org/10.1593/tlo.12442
    75 https://doi.org/10.1677/erc.1.01223
    76 https://doi.org/10.1677/erc.1.01226
    77 https://doi.org/10.2390/biecoll-jib-2014-236
    78 https://doi.org/10.3389/fendo.2012.00031
    79 https://doi.org/10.3389/fgene.2013.00271
    80 schema:datePublished 2015-12
    81 schema:datePublishedReg 2015-12-01
    82 schema:description BACKGROUND: Recently, a wide range of diseases have been associated with changes in DNA methylation levels, which play a vital role in gene expression regulation. With ongoing developments in technology, attempts to understand disease mechanism have benefited greatly from epigenetics and transcriptomics studies. In this work, we have used expression and methylation data of thyroid carcinoma as a case study and explored how to optimally incorporate expression and methylation information into the disease study when both data are available. Moreover, we have also investigated whether there are important post-translational modifiers which could drive critical insights on thyroid cancer genetics. RESULTS: In this study, we have conducted a threshold analysis for varying methylation levels to identify whether setting a methylation level threshold increases the performance of functional enrichment. Moreover, in order to decide on best-performing analysis strategy, we have performed data integration analysis including comparison of 10 different analysis strategies. As a result, combining methylation with expression and using genes with more than 15% methylation change led to optimal detection rate of thyroid-cancer associated pathways in top 20 functional enrichment results. Furthermore, pooling the data from different experiments increased analysis confidence by improving the data range. Consequently, we have identified 207 transcription factors and 245 post-translational modifiers with more than 15% methylation change which may be important in understanding underlying mechanisms of thyroid cancer. CONCLUSION: While only expression or only methylation information would not reveal both primary and secondary mechanisms involved in disease state, combining expression and methylation led to a better detection of thyroid cancer-related genes and pathways that are found in the recent literature. Moreover, focusing on genes that have certain level of methylation change improved the functional enrichment results, revealing the core pathways involved in disease development such as; endocytosis, apoptosis, glutamatergic synapse, MAPK, ErbB, TGF-beta and Toll-like receptor pathways. Overall, in addition to novel analysis framework, our study reveals important thyroid-cancer related mechanisms, secondary molecular alterations and contributes to better knowledge of thyroid cancer aetiology.
    83 schema:genre research_article
    84 schema:inLanguage en
    85 schema:isAccessibleForFree true
    86 schema:isPartOf N2e186e11a3564ce5a9aae44dd7bb9ae9
    87 N6a61dee77ef9421d9b79043e18d6bd31
    88 sg:journal.1023790
    89 schema:name A novel analysis strategy for integrating methylation and expression data reveals core pathways for thyroid cancer aetiology
    90 schema:pagination s7
    91 schema:productId N06727de5692e42c0b21b4fee10937846
    92 N3eb48bb84edf44f39393265325c852a2
    93 N5a4e50ed53754b3482d6591f725a96f9
    94 Na9c820c49382440594ed89b1c112aea1
    95 Ndb4c7c77f1574f4f9986872170674f4b
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019634277
    97 https://doi.org/10.1186/1471-2164-16-s12-s7
    98 schema:sdDatePublished 2019-04-10T16:49
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N6ccc976351b7490cb1df9fe3a1a42131
    101 schema:url http://link.springer.com/10.1186%2F1471-2164-16-S12-S7
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N06727de5692e42c0b21b4fee10937846 schema:name dimensions_id
    106 schema:value pub.1019634277
    107 rdf:type schema:PropertyValue
    108 N0b58f2476a09410f824b6c9f38de769f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Gene Expression Regulation, Neoplastic
    110 rdf:type schema:DefinedTerm
    111 N149a071288db46808b3be3b7c9e5ffd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Thyroid Neoplasms
    113 rdf:type schema:DefinedTerm
    114 N17ac6088d7794f2d8cac0f0c4a317737 rdf:first sg:person.01244434463.90
    115 rdf:rest Naafe4bab54734e9aa8b680a0cef2dcb0
    116 N2326910624ed4f0bb90332f8087419f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Databases, Genetic
    118 rdf:type schema:DefinedTerm
    119 N2e186e11a3564ce5a9aae44dd7bb9ae9 schema:issueNumber Suppl 12
    120 rdf:type schema:PublicationIssue
    121 N39d493d019564d90be3527fc92e28632 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Computational Biology
    123 rdf:type schema:DefinedTerm
    124 N3eb48bb84edf44f39393265325c852a2 schema:name nlm_unique_id
    125 schema:value 100965258
    126 rdf:type schema:PropertyValue
    127 N54b463035da6408a88e6f8f797d23005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Transcriptome
    129 rdf:type schema:DefinedTerm
    130 N5a4e50ed53754b3482d6591f725a96f9 schema:name readcube_id
    131 schema:value 5d8c189075c45cb3a97499f9b7a80d611b388f8f7868aa6a4815841d90e1446c
    132 rdf:type schema:PropertyValue
    133 N6a61dee77ef9421d9b79043e18d6bd31 schema:volumeNumber 16
    134 rdf:type schema:PublicationVolume
    135 N6ccc976351b7490cb1df9fe3a1a42131 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N8ebfc4187c164c9381e3e805a7f2f61c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Sequence Analysis, RNA
    139 rdf:type schema:DefinedTerm
    140 Na9c820c49382440594ed89b1c112aea1 schema:name doi
    141 schema:value 10.1186/1471-2164-16-s12-s7
    142 rdf:type schema:PropertyValue
    143 Naafe4bab54734e9aa8b680a0cef2dcb0 rdf:first sg:person.01361520752.55
    144 rdf:rest rdf:nil
    145 Nbb58a9c44d0146c5a3e8463a7537f9f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Transcription Factors
    147 rdf:type schema:DefinedTerm
    148 Nc6aa1ee73ee6440bae85c5370e3a1c44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Gene Regulatory Networks
    150 rdf:type schema:DefinedTerm
    151 Nd6de8bc35178486dba2577a34a640ab4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 Ndb4c7c77f1574f4f9986872170674f4b schema:name pubmed_id
    155 schema:value 26678064
    156 rdf:type schema:PropertyValue
    157 Neea15a650173488ba261ef304fbfe081 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name DNA Methylation
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Genetics
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1023790 schema:issn 1471-2164
    167 schema:name BMC Genomics
    168 rdf:type schema:Periodical
    169 sg:person.01244434463.90 schema:affiliation https://www.grid.ac/institutes/grid.426409.d
    170 schema:familyName Ozer
    171 schema:givenName Bugra
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434463.90
    173 rdf:type schema:Person
    174 sg:person.01361520752.55 schema:affiliation https://www.grid.ac/institutes/grid.411117.3
    175 schema:familyName Sezerman
    176 schema:givenName Osman Uğur
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361520752.55
    178 rdf:type schema:Person
    179 sg:pub.10.1007/bf02409059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047357740
    180 https://doi.org/10.1007/bf02409059
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s12032-010-9587-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331645
    183 https://doi.org/10.1007/s12032-010-9587-z
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    186 https://doi.org/10.1038/75556
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/bjc.2014.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024855110
    189 https://doi.org/10.1038/bjc.2014.337
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/modpathol.2011.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048358785
    192 https://doi.org/10.1038/modpathol.2011.3
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
    195 https://doi.org/10.1038/nprot.2008.211
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nrc1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041169608
    198 https://doi.org/10.1038/nrc1799
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nrc3431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009089021
    201 https://doi.org/10.1038/nrc3431
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nrc839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014023118
    204 https://doi.org/10.1038/nrc839
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nrc906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543214
    207 https://doi.org/10.1038/nrc906
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nrg816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053491434
    210 https://doi.org/10.1038/nrg816
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nsmb820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005702432
    213 https://doi.org/10.1038/nsmb820
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-2105-11-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448148
    216 https://doi.org/10.1186/1471-2105-11-587
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1755-8794-2-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001301177
    219 https://doi.org/10.1186/1755-8794-2-34
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    222 https://doi.org/10.1186/gb-2004-5-10-r80
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/gb-2009-10-3-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024677703
    225 https://doi.org/10.1186/gb-2009-10-3-r29
    226 rdf:type schema:CreativeWork
    227 https://app.dimensions.ai/details/publication/pub.1075114599 schema:CreativeWork
    228 https://app.dimensions.ai/details/publication/pub.1075192414 schema:CreativeWork
    229 https://app.dimensions.ai/details/publication/pub.1078762495 schema:CreativeWork
    230 https://app.dimensions.ai/details/publication/pub.1081849876 schema:CreativeWork
    231 https://doi.org/10.1016/j.bbrc.2009.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014164862
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.ceb.2009.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049633755
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.cell.2014.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006907054
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.devcel.2008.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008314667
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.it.2004.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003271388
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.jbi.2012.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043304343
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.neuro.2012.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020140498
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.ymeth.2014.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036530097
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/s0006-2952(02)01218-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040377118
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/s0092-8674(00)81683-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031899717
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1056/nejm200102153440707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041095379
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1073/pnas.96.8.4540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020321413
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1074/mcp.r600009-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037579448
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1089/thy.2005.15.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059319565
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1089/thy.2007.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059320151
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/bioinformatics/18.suppl_1.s233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038177541
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/bioinformatics/btr511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012366359
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1093/bioinformatics/bts680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923242
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1093/bioinformatics/btt743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022039800
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1093/biostatistics/kxj037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217055
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/carcin/21.3.485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031234392
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/jnci/95.8.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022322958
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/nar/gks1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052883861
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/nar/gku1151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033224422
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1111/j.1420-9101.2011.02297.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052886192
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1111/j.1600-0854.2008.00816.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016314101
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1158/0008-5472.can-03-3242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048163146
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1159/000220827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024920955
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1172/jci112032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008945160
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1182/blood-2013-07-512855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046575500
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1200/jco.2002.10.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203153
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1210/en.2005-0280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064247389
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1210/jc.2005-0313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064288368
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1210/jc.2006-2157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064289625
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1210/jc.2012-3566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064293949
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1210/jcem.87.3.8345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064325049
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1371/journal.pgen.1002454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005022195
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1530/eje.1.02009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017563052
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1593/tlo.12442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012504395
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1677/erc.1.01223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035909561
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1677/erc.1.01226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020287585
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.2390/biecoll-jib-2014-236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078931067
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.3389/fendo.2012.00031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027511838
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.3389/fgene.2013.00271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015985140
    322 rdf:type schema:CreativeWork
    323 https://www.grid.ac/institutes/grid.411117.3 schema:alternateName Acıbadem University
    324 schema:name Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acıbadem University, 34752, Ataşehir, Istanbul, Turkey
    325 rdf:type schema:Organization
    326 https://www.grid.ac/institutes/grid.426409.d schema:alternateName Scientific and Technological Research Council of Turkey
    327 schema:name Advanced Genomics and Bioinformatics Research Center (IGBAM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Gebze, Kocaeli, Turkey
    328 Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
    329 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...