A theoretical investigation of DNA dynamics and desolvation kinetics for zinc finger proteinZif268 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Shayoni Dutta, Yoshita Agrawal, Aditi Mishra, Jaspreet Kaur Dhanjal, Durai Sundar

ABSTRACT

BACKGROUND: Transcription factors, regulating the expression inventory of a cell, interact with its respective DNA subjugated by a specific recognition pattern, which if well exploited may ensure targeted genome engineering. The mostly widely studied transcription factors are zinc finger proteins that bind to its target DNA via direct and indirect recognition levels at the interaction interface. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help in generating engineered zinc fingers for therapeutic applications. Experimental evidences lucidly substantiate the effect of indirect interaction like DNA deformation and desolvation kinetics, in empowering ZFPs to accomplish partial sequence specificity functioning around structural properties of DNA. Exploring the structure-function relationships of the existing zinc finger-DNA complexes at the indirect recognition level can aid in predicting the probable zinc fingers that could bind to any target DNA. Deformation energy, which defines the energy required to bend DNA from its native shape to its shape when bound to the ZFP, is an effect of indirect recognition mechanism. Water is treated as a co-reactant for unfurling the affinity studies in ZFP-DNA binding equilibria that takes into account the unavoidable change in hydration that occurs when these two solvated surfaces come into contact. RESULTS: Aspects like desolvation and DNA deformation have been theoretically investigated based on simulations and free energy perturbation data revealing a consensus in correlating affinity and specificity as well as stability for ZFP-DNA interactions. Greater loss of water at the interaction interface of the DNA calls for binding with higher affinity, eventually distorting the DNA to a greater extent accounted by the change in major groove width and DNA tilt, stretch and rise. CONCLUSION: Most prediction algorithms for ZFPs do not account for water loss at the interface. The above findings may significantly affect these algorithms. Further the sequence dependent deformation in the DNA upon complexation with our prototype as well as preference of bases at the 2nd and 3rd position of the repeating triplet provide an absolutely new insight about the indirect interactions undergoing a change that have not been probed yet. More... »

PAGES

s5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s5

DOI

http://dx.doi.org/10.1186/1471-2164-16-s12-s5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047248912

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26677774


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Growth Response Protein 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Bonding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Docking Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.454774.1", 
          "name": [
            "Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT) Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutta", 
        "givenName": "Shayoni", 
        "id": "sg:person.01021731323.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021731323.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.454774.1", 
          "name": [
            "Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT) Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrawal", 
        "givenName": "Yoshita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.454774.1", 
          "name": [
            "Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT) Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "Aditi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.454774.1", 
          "name": [
            "Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT) Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhanjal", 
        "givenName": "Jaspreet Kaur", 
        "id": "sg:person.0575447326.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575447326.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.454774.1", 
          "name": [
            "Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT) Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sundar", 
        "givenName": "Durai", 
        "id": "sg:person.01142412575.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142412575.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1529/biophysj.106.097782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003968762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006388252", 
          "https://doi.org/10.1038/nprot.2010.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006388252", 
          "https://doi.org/10.1038/nprot.2010.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m004294200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007688287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010068706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct200909j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011026362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012674250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012674250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016626537", 
          "https://doi.org/10.1038/nprot.2008.104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2012.11.3201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017925040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329263a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019269326", 
          "https://doi.org/10.1038/329263a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.1989.10506544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023622673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr03235c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029956542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033216981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biophys.33.110502.140414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034123656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035043717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.1989.10506545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036565769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037970273", 
          "https://doi.org/10.1038/nbt.1590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037970273", 
          "https://doi.org/10.1038/nbt.1590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2004.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039085280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039270507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct900587b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct900587b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6603(08)60253-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047824096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048709908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051380243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00185a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055164297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi981358z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055216261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi981358z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055216261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00214a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055714735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2007.1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074736030", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076584755", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814447362_0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096039977"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Transcription factors, regulating the expression inventory of a cell, interact with its respective DNA subjugated by a specific recognition pattern, which if well exploited may ensure targeted genome engineering. The mostly widely studied transcription factors are zinc finger proteins that bind to its target DNA via direct and indirect recognition levels at the interaction interface. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help in generating engineered zinc fingers for therapeutic applications. Experimental evidences lucidly substantiate the effect of indirect interaction like DNA deformation and desolvation kinetics, in empowering ZFPs to accomplish partial sequence specificity functioning around structural properties of DNA. Exploring the structure-function relationships of the existing zinc finger-DNA complexes at the indirect recognition level can aid in predicting the probable zinc fingers that could bind to any target DNA. Deformation energy, which defines the energy required to bend DNA from its native shape to its shape when bound to the ZFP, is an effect of indirect recognition mechanism. Water is treated as a co-reactant for unfurling the affinity studies in ZFP-DNA binding equilibria that takes into account the unavoidable change in hydration that occurs when these two solvated surfaces come into contact.\nRESULTS: Aspects like desolvation and DNA deformation have been theoretically investigated based on simulations and free energy perturbation data revealing a consensus in correlating affinity and specificity as well as stability for ZFP-DNA interactions. Greater loss of water at the interaction interface of the DNA calls for binding with higher affinity, eventually distorting the DNA to a greater extent accounted by the change in major groove width and DNA tilt, stretch and rise.\nCONCLUSION: Most prediction algorithms for ZFPs do not account for water loss at the interface. The above findings may significantly affect these algorithms. Further the sequence dependent deformation in the DNA upon complexation with our prototype as well as preference of bases at the 2nd and 3rd position of the repeating triplet provide an absolutely new insight about the indirect interactions undergoing a change that have not been probed yet.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-16-s12-s5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "A theoretical investigation of DNA dynamics and desolvation kinetics for zinc finger proteinZif268", 
    "pagination": "s5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e11451e9bc8e8a91a108e36a38fbc1f9d7956e358bd7c25a69e48d66f912b76c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26677774"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-16-s12-s5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047248912"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-16-s12-s5", 
      "https://app.dimensions.ai/details/publication/pub.1047248912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-16-S12-S5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-16-s12-s5'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      68 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-16-s12-s5 schema:about N0b92d8ae666f40c8ab46eeb90ba7666a
2 N0ea9e8f67f5e4c4d9764d95aff095277
3 N162ce7d07f3e419a8e8d666f20ea3282
4 N1b7444d7dc26403295af8f135e3c13d1
5 N3ce68239232743b7842ecc0aceeae120
6 N3f2cd55c7b17409788132f3f137855a5
7 N70f681488a614e4eb4648a8941009ebc
8 N86fb3e2b0cff458698b7e9a73f9f6e43
9 Nb3f1817478f44868ac6edfcacd4da9e7
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author N9968a002f18c4400a45e0be278b4adb8
13 schema:citation sg:pub.10.1038/329263a0
14 sg:pub.10.1038/nbt.1590
15 sg:pub.10.1038/nprot.2008.104
16 sg:pub.10.1038/nprot.2010.32
17 https://app.dimensions.ai/details/publication/pub.1074736030
18 https://app.dimensions.ai/details/publication/pub.1076584755
19 https://doi.org/10.1002/jcc.20290
20 https://doi.org/10.1002/prot.21123
21 https://doi.org/10.1002/prot.24167
22 https://doi.org/10.1016/j.bpj.2012.11.3201
23 https://doi.org/10.1016/j.jbiotec.2004.12.016
24 https://doi.org/10.1016/j.jmb.2004.01.033
25 https://doi.org/10.1016/s0079-6603(08)60253-6
26 https://doi.org/10.1021/bi00185a004
27 https://doi.org/10.1021/bi981358z
28 https://doi.org/10.1021/ct200909j
29 https://doi.org/10.1021/ct900587b
30 https://doi.org/10.1021/ja00214a001
31 https://doi.org/10.1039/c3nr03235c
32 https://doi.org/10.1063/1.445869
33 https://doi.org/10.1073/pnas.95.25.14628
34 https://doi.org/10.1074/jbc.m004294200
35 https://doi.org/10.1080/07391102.1989.10506544
36 https://doi.org/10.1080/07391102.1989.10506545
37 https://doi.org/10.1093/bioinformatics/18.suppl_1.s22
38 https://doi.org/10.1093/nar/gkm276
39 https://doi.org/10.1109/tcbb.2007.1000
40 https://doi.org/10.1142/9789814447362_0011
41 https://doi.org/10.1146/annurev.biophys.33.110502.140414
42 https://doi.org/10.1529/biophysj.106.097782
43 schema:datePublished 2015-12
44 schema:datePublishedReg 2015-12-01
45 schema:description BACKGROUND: Transcription factors, regulating the expression inventory of a cell, interact with its respective DNA subjugated by a specific recognition pattern, which if well exploited may ensure targeted genome engineering. The mostly widely studied transcription factors are zinc finger proteins that bind to its target DNA via direct and indirect recognition levels at the interaction interface. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help in generating engineered zinc fingers for therapeutic applications. Experimental evidences lucidly substantiate the effect of indirect interaction like DNA deformation and desolvation kinetics, in empowering ZFPs to accomplish partial sequence specificity functioning around structural properties of DNA. Exploring the structure-function relationships of the existing zinc finger-DNA complexes at the indirect recognition level can aid in predicting the probable zinc fingers that could bind to any target DNA. Deformation energy, which defines the energy required to bend DNA from its native shape to its shape when bound to the ZFP, is an effect of indirect recognition mechanism. Water is treated as a co-reactant for unfurling the affinity studies in ZFP-DNA binding equilibria that takes into account the unavoidable change in hydration that occurs when these two solvated surfaces come into contact. RESULTS: Aspects like desolvation and DNA deformation have been theoretically investigated based on simulations and free energy perturbation data revealing a consensus in correlating affinity and specificity as well as stability for ZFP-DNA interactions. Greater loss of water at the interaction interface of the DNA calls for binding with higher affinity, eventually distorting the DNA to a greater extent accounted by the change in major groove width and DNA tilt, stretch and rise. CONCLUSION: Most prediction algorithms for ZFPs do not account for water loss at the interface. The above findings may significantly affect these algorithms. Further the sequence dependent deformation in the DNA upon complexation with our prototype as well as preference of bases at the 2nd and 3rd position of the repeating triplet provide an absolutely new insight about the indirect interactions undergoing a change that have not been probed yet.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N21976fe9327d4364bf95f5cdc91f4a1c
50 Nd000ac68622b4a59ae5a2f5a8fbd0ed7
51 sg:journal.1023790
52 schema:name A theoretical investigation of DNA dynamics and desolvation kinetics for zinc finger proteinZif268
53 schema:pagination s5
54 schema:productId N10639e9440cf406f92b07597d7b31e2b
55 N44c97e9f4f61421f9d1c7de4fb2756cd
56 N807f220493c544edb974a955ef8448c6
57 N9c91dc51711c48e18a7a3f44f6a5364a
58 Nb878c7fd51234afa9e74575713dbabb4
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047248912
60 https://doi.org/10.1186/1471-2164-16-s12-s5
61 schema:sdDatePublished 2019-04-10T17:38
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N3ada1a5d904b4c99833202fc7b9de614
64 schema:url http://link.springer.com/10.1186%2F1471-2164-16-S12-S5
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0b92d8ae666f40c8ab46eeb90ba7666a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Base Sequence
70 rdf:type schema:DefinedTerm
71 N0ea9e8f67f5e4c4d9764d95aff095277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Hydrogen Bonding
73 rdf:type schema:DefinedTerm
74 N10639e9440cf406f92b07597d7b31e2b schema:name doi
75 schema:value 10.1186/1471-2164-16-s12-s5
76 rdf:type schema:PropertyValue
77 N162ce7d07f3e419a8e8d666f20ea3282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Early Growth Response Protein 1
79 rdf:type schema:DefinedTerm
80 N1b7444d7dc26403295af8f135e3c13d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Kinetics
82 rdf:type schema:DefinedTerm
83 N21976fe9327d4364bf95f5cdc91f4a1c schema:volumeNumber 16
84 rdf:type schema:PublicationVolume
85 N3ada1a5d904b4c99833202fc7b9de614 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N3ce68239232743b7842ecc0aceeae120 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Algorithms
89 rdf:type schema:DefinedTerm
90 N3f2cd55c7b17409788132f3f137855a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Protein Binding
92 rdf:type schema:DefinedTerm
93 N3fec3417322942e09db74b6cf5287ea0 rdf:first Ne107d6aa7a99415883f54b153e8b57e2
94 rdf:rest N895759712d5f41f19ce5f7d2b77496bd
95 N443d6c68ed494f56977449da698b45a6 rdf:first sg:person.0575447326.72
96 rdf:rest Na09e852fa669478ea19371c1cc1ac112
97 N44c97e9f4f61421f9d1c7de4fb2756cd schema:name readcube_id
98 schema:value e11451e9bc8e8a91a108e36a38fbc1f9d7956e358bd7c25a69e48d66f912b76c
99 rdf:type schema:PropertyValue
100 N70f681488a614e4eb4648a8941009ebc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Binding Sites
102 rdf:type schema:DefinedTerm
103 N807f220493c544edb974a955ef8448c6 schema:name pubmed_id
104 schema:value 26677774
105 rdf:type schema:PropertyValue
106 N86fb3e2b0cff458698b7e9a73f9f6e43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name DNA
108 rdf:type schema:DefinedTerm
109 N895759712d5f41f19ce5f7d2b77496bd rdf:first Nd3ef2536664649a78fafd23ed5b8ddbf
110 rdf:rest N443d6c68ed494f56977449da698b45a6
111 N9968a002f18c4400a45e0be278b4adb8 rdf:first sg:person.01021731323.25
112 rdf:rest N3fec3417322942e09db74b6cf5287ea0
113 N9c91dc51711c48e18a7a3f44f6a5364a schema:name nlm_unique_id
114 schema:value 100965258
115 rdf:type schema:PropertyValue
116 Na09e852fa669478ea19371c1cc1ac112 rdf:first sg:person.01142412575.57
117 rdf:rest rdf:nil
118 Nb3f1817478f44868ac6edfcacd4da9e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Molecular Docking Simulation
120 rdf:type schema:DefinedTerm
121 Nb878c7fd51234afa9e74575713dbabb4 schema:name dimensions_id
122 schema:value pub.1047248912
123 rdf:type schema:PropertyValue
124 Nd000ac68622b4a59ae5a2f5a8fbd0ed7 schema:issueNumber Suppl 12
125 rdf:type schema:PublicationIssue
126 Nd3ef2536664649a78fafd23ed5b8ddbf schema:affiliation https://www.grid.ac/institutes/grid.454774.1
127 schema:familyName Mishra
128 schema:givenName Aditi
129 rdf:type schema:Person
130 Ne107d6aa7a99415883f54b153e8b57e2 schema:affiliation https://www.grid.ac/institutes/grid.454774.1
131 schema:familyName Agrawal
132 schema:givenName Yoshita
133 rdf:type schema:Person
134 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
135 schema:name Chemical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
138 schema:name Physical Chemistry (incl. Structural)
139 rdf:type schema:DefinedTerm
140 sg:journal.1023790 schema:issn 1471-2164
141 schema:name BMC Genomics
142 rdf:type schema:Periodical
143 sg:person.01021731323.25 schema:affiliation https://www.grid.ac/institutes/grid.454774.1
144 schema:familyName Dutta
145 schema:givenName Shayoni
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021731323.25
147 rdf:type schema:Person
148 sg:person.01142412575.57 schema:affiliation https://www.grid.ac/institutes/grid.454774.1
149 schema:familyName Sundar
150 schema:givenName Durai
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142412575.57
152 rdf:type schema:Person
153 sg:person.0575447326.72 schema:affiliation https://www.grid.ac/institutes/grid.454774.1
154 schema:familyName Dhanjal
155 schema:givenName Jaspreet Kaur
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575447326.72
157 rdf:type schema:Person
158 sg:pub.10.1038/329263a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019269326
159 https://doi.org/10.1038/329263a0
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nbt.1590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037970273
162 https://doi.org/10.1038/nbt.1590
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nprot.2008.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016626537
165 https://doi.org/10.1038/nprot.2008.104
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nprot.2010.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006388252
168 https://doi.org/10.1038/nprot.2010.32
169 rdf:type schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1074736030 schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1076584755 schema:CreativeWork
172 https://doi.org/10.1002/jcc.20290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012674250
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/prot.21123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033216981
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/prot.24167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010068706
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.bpj.2012.11.3201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017925040
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jbiotec.2004.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039085280
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jmb.2004.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039270507
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0079-6603(08)60253-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824096
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/bi00185a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055164297
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/bi981358z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055216261
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/ct200909j schema:sameAs https://app.dimensions.ai/details/publication/pub.1011026362
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/ct900587b schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183961
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/ja00214a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055714735
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/c3nr03235c schema:sameAs https://app.dimensions.ai/details/publication/pub.1029956542
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.445869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023889
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.95.25.14628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035043717
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1074/jbc.m004294200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007688287
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/07391102.1989.10506544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023622673
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/07391102.1989.10506545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036565769
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/18.suppl_1.s22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048709908
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gkm276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051380243
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tcbb.2007.1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540525
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1142/9789814447362_0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096039977
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1146/annurev.biophys.33.110502.140414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034123656
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1529/biophysj.106.097782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003968762
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.454774.1 schema:alternateName Department of Biotechnology
221 schema:name Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT) Delhi, 110016, New Delhi, India
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...