Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Johanna K Höglund, Goutam Sahana, Rasmus Froberg Brøndum, Bernt Guldbrandtsen, Bart Buitenhuis, Mogens S Lund

ABSTRACT

BACKGROUND: Female fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits. RESULTS: BTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest -log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic. CONCLUSION: Screening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits. More... »

PAGES

790

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-15-790

DOI

http://dx.doi.org/10.1186/1471-2164-15-790

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029771054

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25216717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish University of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.6341.0", 
          "name": [
            "Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark", 
            "Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6glund", 
        "givenName": "Johanna K", 
        "id": "sg:person.01203034260.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahana", 
        "givenName": "Goutam", 
        "id": "sg:person.0727046246.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Br\u00f8ndum", 
        "givenName": "Rasmus Froberg", 
        "id": "sg:person.0757045612.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757045612.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guldbrandtsen", 
        "givenName": "Bernt", 
        "id": "sg:person.0655324301.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buitenhuis", 
        "givenName": "Bart", 
        "id": "sg:person.0650267300.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650267300.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "Mogens S", 
        "id": "sg:person.0740177106.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0065550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002738930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-15-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004306245", 
          "https://doi.org/10.1186/1471-2156-15-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023839045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028025360", 
          "https://doi.org/10.1038/ng.3034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-43-43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030941918", 
          "https://doi.org/10.1186/1297-9686-43-43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2011-4624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031598086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2012-5379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035908887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-10-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039058389", 
          "https://doi.org/10.1186/1471-2156-10-19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-39-2-181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046658059", 
          "https://doi.org/10.1186/1297-9686-39-2-181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047117020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.7.080505.115623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047886041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051654714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052463226", 
          "https://doi.org/10.1186/1471-2164-9-187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(05)72861-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077038452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077297430", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077890248"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Female fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits.\nRESULTS: BTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest -log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic.\nCONCLUSION: Screening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-15-790", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data", 
    "pagination": "790", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8dd2f78834e307d90209ef4523ff3bff39cbe97aeb77760664a4d13b3d4a0602"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25216717"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-15-790"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029771054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-15-790", 
      "https://app.dimensions.ai/details/publication/pub.1029771054"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-15-790"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-790'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-790'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-790'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-790'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      70 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-15-790 schema:about N225888dbb5b14b36ba70e722bf7cbdc1
2 N2542f5cb82ff4a4e957ebad936bdd67b
3 N37ff3821f91f462ea3d7da8682aa021b
4 N4676fe3836b147c8ac97ba1a9d31a751
5 N474f1f224766462eb5d683697462bab3
6 N4b284681f8e149d7a762a8dae3ef3f80
7 N558e5d7ee7f244118cf429d3772a827d
8 N57ccdc67534448a9b05b6d8d08baba5e
9 N5819503c73dc45b9a67cf1fc03baec53
10 N660ac17f0b20480e8598644299f20eb2
11 N7acffd8a86504e8aaa70bd44343d1928
12 N8c62329d094e466ea530709a650fb8d6
13 Nd7c58cdd4fb743c2af11856d1b83a9c9
14 Nee6a9052abfa4a80a83c6c64fe93b68b
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N968518f58e9e4ee08882a68db985bbbb
18 schema:citation sg:pub.10.1038/ng.3034
19 sg:pub.10.1038/ng1702
20 sg:pub.10.1186/1297-9686-39-2-181
21 sg:pub.10.1186/1297-9686-43-43
22 sg:pub.10.1186/1471-2156-10-19
23 sg:pub.10.1186/1471-2156-15-8
24 sg:pub.10.1186/1471-2164-9-187
25 sg:pub.10.1186/gb-2009-10-4-r42
26 https://app.dimensions.ai/details/publication/pub.1077297430
27 https://doi.org/10.1016/j.ajhg.2009.01.005
28 https://doi.org/10.1093/bioinformatics/bth457
29 https://doi.org/10.1093/bioinformatics/btp324
30 https://doi.org/10.1093/bioinformatics/btp352
31 https://doi.org/10.1093/bioinformatics/btq330
32 https://doi.org/10.1093/nar/29.1.308
33 https://doi.org/10.1093/nar/gks1150
34 https://doi.org/10.1101/gr.078212.108
35 https://doi.org/10.1101/gr.107524.110
36 https://doi.org/10.1111/j.1365-2052.2010.02064.x
37 https://doi.org/10.1146/annurev.genom.7.080505.115623
38 https://doi.org/10.1371/journal.pgen.1000529
39 https://doi.org/10.1371/journal.pone.0065550
40 https://doi.org/10.1371/journal.pone.0082909
41 https://doi.org/10.3168/jds.2008-1104
42 https://doi.org/10.3168/jds.2011-4624
43 https://doi.org/10.3168/jds.2012-5379
44 https://doi.org/10.3168/jds.s0022-0302(05)72861-7
45 schema:datePublished 2014-12
46 schema:datePublishedReg 2014-12-01
47 schema:description BACKGROUND: Female fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits. RESULTS: BTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest -log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic. CONCLUSION: Screening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N878113c4de144dfaa6853f3530368141
52 Nb58a71675efd4fc3b67c1c12689f4bab
53 sg:journal.1023790
54 schema:name Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data
55 schema:pagination 790
56 schema:productId N035c6593a71749c3930e0f67f9562e88
57 N12e34b88deaa494c845da8414b3a63ee
58 N338764f7934641adaa092e61647eb85c
59 Ndf2b67ec1e4b4dc98daade547437a4e5
60 Nf30729488d72423d8144d6dbb3ba5f5d
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029771054
62 https://doi.org/10.1186/1471-2164-15-790
63 schema:sdDatePublished 2019-04-10T22:39
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N6a2be4cf016b4c12b3c86f32ed3e3086
66 schema:url http://link.springer.com/10.1186%2F1471-2164-15-790
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N035c6593a71749c3930e0f67f9562e88 schema:name doi
71 schema:value 10.1186/1471-2164-15-790
72 rdf:type schema:PropertyValue
73 N12e34b88deaa494c845da8414b3a63ee schema:name pubmed_id
74 schema:value 25216717
75 rdf:type schema:PropertyValue
76 N1b13f8adfd664c18a246a9ceb6b0f4e0 rdf:first sg:person.0740177106.57
77 rdf:rest rdf:nil
78 N225888dbb5b14b36ba70e722bf7cbdc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Quantitative Trait Loci
80 rdf:type schema:DefinedTerm
81 N2542f5cb82ff4a4e957ebad936bdd67b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Animals
83 rdf:type schema:DefinedTerm
84 N338764f7934641adaa092e61647eb85c schema:name nlm_unique_id
85 schema:value 100965258
86 rdf:type schema:PropertyValue
87 N37ff3821f91f462ea3d7da8682aa021b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Chromosome Mapping
89 rdf:type schema:DefinedTerm
90 N4676fe3836b147c8ac97ba1a9d31a751 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Genetic Markers
92 rdf:type schema:DefinedTerm
93 N474f1f224766462eb5d683697462bab3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genomics
95 rdf:type schema:DefinedTerm
96 N4b284681f8e149d7a762a8dae3ef3f80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Genome-Wide Association Study
98 rdf:type schema:DefinedTerm
99 N558e5d7ee7f244118cf429d3772a827d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Cattle
101 rdf:type schema:DefinedTerm
102 N57ccdc67534448a9b05b6d8d08baba5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name High-Throughput Nucleotide Sequencing
104 rdf:type schema:DefinedTerm
105 N5819503c73dc45b9a67cf1fc03baec53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Phenotype
107 rdf:type schema:DefinedTerm
108 N660ac17f0b20480e8598644299f20eb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Female
110 rdf:type schema:DefinedTerm
111 N6a2be4cf016b4c12b3c86f32ed3e3086 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N78acbc899d57494b93c45587c55d5260 rdf:first sg:person.0757045612.02
114 rdf:rest N899a23c739b94392a6a450d50674927c
115 N7acffd8a86504e8aaa70bd44343d1928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Computational Biology
117 rdf:type schema:DefinedTerm
118 N878113c4de144dfaa6853f3530368141 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 N899a23c739b94392a6a450d50674927c rdf:first sg:person.0655324301.37
121 rdf:rest Ne1f78078c35446c4b009663d9ddd568c
122 N8c62329d094e466ea530709a650fb8d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Linkage Disequilibrium
124 rdf:type schema:DefinedTerm
125 N968518f58e9e4ee08882a68db985bbbb rdf:first sg:person.01203034260.48
126 rdf:rest N9b229c0f9a1942a4b31552bbef9d1f7a
127 N9b229c0f9a1942a4b31552bbef9d1f7a rdf:first sg:person.0727046246.31
128 rdf:rest N78acbc899d57494b93c45587c55d5260
129 Nb58a71675efd4fc3b67c1c12689f4bab schema:volumeNumber 15
130 rdf:type schema:PublicationVolume
131 Nd7c58cdd4fb743c2af11856d1b83a9c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Polymorphism, Single Nucleotide
133 rdf:type schema:DefinedTerm
134 Ndf2b67ec1e4b4dc98daade547437a4e5 schema:name readcube_id
135 schema:value 8dd2f78834e307d90209ef4523ff3bff39cbe97aeb77760664a4d13b3d4a0602
136 rdf:type schema:PropertyValue
137 Ne1f78078c35446c4b009663d9ddd568c rdf:first sg:person.0650267300.38
138 rdf:rest N1b13f8adfd664c18a246a9ceb6b0f4e0
139 Nee6a9052abfa4a80a83c6c64fe93b68b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Fertility
141 rdf:type schema:DefinedTerm
142 Nf30729488d72423d8144d6dbb3ba5f5d schema:name dimensions_id
143 schema:value pub.1029771054
144 rdf:type schema:PropertyValue
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
149 schema:name Genetics
150 rdf:type schema:DefinedTerm
151 sg:journal.1023790 schema:issn 1471-2164
152 schema:name BMC Genomics
153 rdf:type schema:Periodical
154 sg:person.01203034260.48 schema:affiliation https://www.grid.ac/institutes/grid.6341.0
155 schema:familyName Höglund
156 schema:givenName Johanna K
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48
158 rdf:type schema:Person
159 sg:person.0650267300.38 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
160 schema:familyName Buitenhuis
161 schema:givenName Bart
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650267300.38
163 rdf:type schema:Person
164 sg:person.0655324301.37 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
165 schema:familyName Guldbrandtsen
166 schema:givenName Bernt
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37
168 rdf:type schema:Person
169 sg:person.0727046246.31 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
170 schema:familyName Sahana
171 schema:givenName Goutam
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31
173 rdf:type schema:Person
174 sg:person.0740177106.57 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
175 schema:familyName Lund
176 schema:givenName Mogens S
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57
178 rdf:type schema:Person
179 sg:person.0757045612.02 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
180 schema:familyName Brøndum
181 schema:givenName Rasmus Froberg
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757045612.02
183 rdf:type schema:Person
184 sg:pub.10.1038/ng.3034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028025360
185 https://doi.org/10.1038/ng.3034
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
188 https://doi.org/10.1038/ng1702
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1297-9686-39-2-181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046658059
191 https://doi.org/10.1186/1297-9686-39-2-181
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/1297-9686-43-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030941918
194 https://doi.org/10.1186/1297-9686-43-43
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/1471-2156-10-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039058389
197 https://doi.org/10.1186/1471-2156-10-19
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1471-2156-15-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004306245
200 https://doi.org/10.1186/1471-2156-15-8
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2164-9-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052463226
203 https://doi.org/10.1186/1471-2164-9-187
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
206 https://doi.org/10.1186/gb-2009-10-4-r42
207 rdf:type schema:CreativeWork
208 https://app.dimensions.ai/details/publication/pub.1077297430 schema:CreativeWork
209 https://doi.org/10.1016/j.ajhg.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033548087
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/btq330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117020
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/29.1.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817660
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gks1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051654714
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/j.1365-2052.2010.02064.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623410
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1146/annurev.genom.7.080505.115623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047886041
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pone.0065550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002738930
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0082909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023839045
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3168/jds.2008-1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077890248
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3168/jds.2011-4624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031598086
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3168/jds.2012-5379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035908887
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3168/jds.s0022-0302(05)72861-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077038452
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.6341.0 schema:alternateName Swedish University of Agricultural Sciences
246 schema:name Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden
247 Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
250 schema:name Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...