Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-09

AUTHORS

Richard Landstorfer, Svenja Simon, Steffen Schober, Daniel Keim, Siegfried Scherer, Klaus Neuhaus

ABSTRACT

BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. More... »

PAGES

353

References to SciGraph publications

  • 2011-06-28. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation in BMC GENOMICS
  • 2010-10-01. Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation in MOLECULAR GENETICS AND GENOMICS
  • 2011-01-09. Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7 in CURRENT MICROBIOLOGY
  • 2010-04-16. Transfer of Enteric Pathogens to Successive Habitats as Part of Microbial Cycles in MICROBIAL ECOLOGY
  • 2007-10-02. Production of L-carnitine by secondary metabolism of bacteria in MICROBIAL CELL FACTORIES
  • 2009-12-07. Molecular mechanisms of Escherichia coli pathogenicity in NATURE REVIEWS MICROBIOLOGY
  • 2012-12-27. How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? in BMC GENOMICS
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2012-06-12. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells in BMC MICROBIOLOGY
  • 2004-02. Pathogenic Escherichia coli in NATURE REVIEWS MICROBIOLOGY
  • 2008-02-28. Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA) in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2009-03-04. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2011-11-14. The MetJ regulon in gammaproteobacteria determined by comparative genomics methods in BMC GENOMICS
  • 2009-04. Principles of c-di-GMP signalling in bacteria in NATURE REVIEWS MICROBIOLOGY
  • 2010-08-25. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences in GENOME BIOLOGY
  • 2004-09-15. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-15-353

    DOI

    http://dx.doi.org/10.1186/1471-2164-15-353

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034040295

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24885796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cattle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli O157", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feces", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen-Ion Concentration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Raphanus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Virulence Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Landstorfer", 
            "givenName": "Richard", 
            "id": "sg:person.0613232776.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613232776.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simon", 
            "givenName": "Svenja", 
            "id": "sg:person.01366261267.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366261267.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Nachrichtentechnik, Universit\u00e4t Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institut f\u00fcr Nachrichtentechnik, Universit\u00e4t Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schober", 
            "givenName": "Steffen", 
            "id": "sg:person.01163305730.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163305730.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keim", 
            "givenName": "Daniel", 
            "id": "sg:person.0635776571.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scherer", 
            "givenName": "Siegfried", 
            "id": "sg:person.01167132061.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167132061.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neuhaus", 
            "givenName": "Klaus", 
            "id": "sg:person.0767764126.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767764126.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011876605", 
              "https://doi.org/10.1038/nrmicro818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018646208", 
              "https://doi.org/10.1186/1471-2164-13-734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013720956", 
              "https://doi.org/10.1186/1471-2164-12-558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-12-103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002499121", 
              "https://doi.org/10.1186/1471-2180-12-103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004527512", 
              "https://doi.org/10.1186/1471-2164-12-332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970366", 
              "https://doi.org/10.1038/nrmicro2265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050633398", 
              "https://doi.org/10.1038/nrmicro2109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046347776", 
              "https://doi.org/10.1186/gb-2010-11-8-r86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00284-010-9862-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048400112", 
              "https://doi.org/10.1007/s00284-010-9862-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031430876", 
              "https://doi.org/10.1038/ismej.2008.24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-010-0578-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040232546", 
              "https://doi.org/10.1007/s00438-010-0578-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-010-9663-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011211377", 
              "https://doi.org/10.1007/s00248-010-9663-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-6-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037203144", 
              "https://doi.org/10.1186/1475-2859-6-31"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-09", 
        "datePublishedReg": "2014-05-09", 
        "description": "BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15\u00b0C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-15-353", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "hypothetical genes", 
          "enterohemorrhagic Escherichia coli O157", 
          "minimal medium", 
          "strand-specific transcriptomes", 
          "minority of genes", 
          "unknown gene functions", 
          "LB medium", 
          "Illumina system", 
          "unique regulatory patterns", 
          "M9 minimal medium", 
          "cattle feces", 
          "higher transcriptional activity", 
          "environmental transcriptomics", 
          "transcriptional signals", 
          "gene function", 
          "significant genome", 
          "abiotic conditions", 
          "different environmental conditions", 
          "regulatory patterns", 
          "transcriptional activity", 
          "sequencing reads", 
          "Escherichia coli O157", 
          "genes", 
          "background transcription", 
          "presence of antibiotics", 
          "radish sprouts", 
          "genetic determinants", 
          "environmental conditions", 
          "human host", 
          "island lee", 
          "coli O157", 
          "environmental factors", 
          "new role", 
          "agar plates", 
          "active biofilm", 
          "sprouts", 
          "EHEC", 
          "environmental functions", 
          "leaf juice", 
          "transcriptome", 
          "genome", 
          "transcriptomics", 
          "transcription", 
          "ecology", 
          "unique set", 
          "animal products", 
          "H7", 
          "phages", 
          "reads", 
          "annotation", 
          "pathogens", 
          "biofilms", 
          "host", 
          "O157", 
          "feces", 
          "induction", 
          "fruit", 
          "function", 
          "AzoR", 
          "strains", 
          "infection source", 
          "antibiotics", 
          "medium", 
          "role", 
          "activity", 
          "patterns", 
          "conditions", 
          "variety", 
          "determinants", 
          "signals", 
          "vegetables", 
          "presence", 
          "pH7", 
          "factors", 
          "statistical methods", 
          "high correlation", 
          "products", 
          "system", 
          "future research", 
          "source", 
          "pH4", 
          "lb", 
          "surface", 
          "pH9", 
          "comparison", 
          "set", 
          "treatment", 
          "correlation", 
          "approach", 
          "third", 
          "instances", 
          "research", 
          "juice", 
          "Lee", 
          "plate", 
          "appropriate technique", 
          "ConclusionsSince", 
          "method", 
          "technique", 
          "assumption", 
          "minority", 
          "solids"
        ], 
        "name": "Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces", 
        "pagination": "353", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034040295"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-15-353"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24885796"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-15-353", 
          "https://app.dimensions.ai/details/publication/pub.1034040295"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_629.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-15-353"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'


     

    This table displays all metadata directly associated to this object as RDF triples.

    323 TRIPLES      21 PREDICATES      157 URIs      133 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-15-353 schema:about N0b7c0353599f4abb811b46cb61b3ee32
    2 N0eb5c39bbf264a478e81e5181e794c44
    3 N374ab76da8a647549de3fb5e26e4a6f2
    4 N4bbbbd05c7eb4616b8a02d6fabea78ab
    5 N5fe16998596a444196a52e8f7b21c4e3
    6 N6281a7f8c4d6468b9b495620996fe666
    7 N6c7e96be65b540fb83272587e9bfdcaa
    8 N7f7e068bc375421cba1bb6b2fc1da16e
    9 Nb44795a751f34a68a5841379309162a1
    10 Nd68e237f8b644f04a6858d47a7e4aa77
    11 Nddda96404249431f8a51248bf7e8ead4
    12 Nfad3db4a32494c889a8ee2a2fe8e4770
    13 Nfbd4120896954038b9422f81415d795c
    14 Nfbe8d5930d124bf99a95fe6b039a97a2
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author N4a341edd3e8240e28e922922a7b1cae3
    18 schema:citation sg:pub.10.1007/s00248-010-9663-0
    19 sg:pub.10.1007/s00284-010-9862-4
    20 sg:pub.10.1007/s00438-010-0578-8
    21 sg:pub.10.1038/ismej.2008.24
    22 sg:pub.10.1038/nmeth.1226
    23 sg:pub.10.1038/nrmicro2109
    24 sg:pub.10.1038/nrmicro2265
    25 sg:pub.10.1038/nrmicro818
    26 sg:pub.10.1186/1471-2164-12-332
    27 sg:pub.10.1186/1471-2164-12-558
    28 sg:pub.10.1186/1471-2164-13-734
    29 sg:pub.10.1186/1471-2180-12-103
    30 sg:pub.10.1186/1475-2859-6-31
    31 sg:pub.10.1186/gb-2004-5-10-r80
    32 sg:pub.10.1186/gb-2009-10-3-r25
    33 sg:pub.10.1186/gb-2010-11-8-r86
    34 schema:datePublished 2014-05-09
    35 schema:datePublishedReg 2014-05-09
    36 schema:description BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N7468b63b1fb8462f902fe10fc1ef276b
    40 N984b38a2a2b14d07bbe1e4f7bdea9544
    41 sg:journal.1023790
    42 schema:keywords AzoR
    43 ConclusionsSince
    44 EHEC
    45 Escherichia coli O157
    46 H7
    47 Illumina system
    48 LB medium
    49 Lee
    50 M9 minimal medium
    51 O157
    52 abiotic conditions
    53 active biofilm
    54 activity
    55 agar plates
    56 animal products
    57 annotation
    58 antibiotics
    59 approach
    60 appropriate technique
    61 assumption
    62 background transcription
    63 biofilms
    64 cattle feces
    65 coli O157
    66 comparison
    67 conditions
    68 correlation
    69 determinants
    70 different environmental conditions
    71 ecology
    72 enterohemorrhagic Escherichia coli O157
    73 environmental conditions
    74 environmental factors
    75 environmental functions
    76 environmental transcriptomics
    77 factors
    78 feces
    79 fruit
    80 function
    81 future research
    82 gene function
    83 genes
    84 genetic determinants
    85 genome
    86 high correlation
    87 higher transcriptional activity
    88 host
    89 human host
    90 hypothetical genes
    91 induction
    92 infection source
    93 instances
    94 island lee
    95 juice
    96 lb
    97 leaf juice
    98 medium
    99 method
    100 minimal medium
    101 minority
    102 minority of genes
    103 new role
    104 pH4
    105 pH7
    106 pH9
    107 pathogens
    108 patterns
    109 phages
    110 plate
    111 presence
    112 presence of antibiotics
    113 products
    114 radish sprouts
    115 reads
    116 regulatory patterns
    117 research
    118 role
    119 sequencing reads
    120 set
    121 signals
    122 significant genome
    123 solids
    124 source
    125 sprouts
    126 statistical methods
    127 strains
    128 strand-specific transcriptomes
    129 surface
    130 system
    131 technique
    132 third
    133 transcription
    134 transcriptional activity
    135 transcriptional signals
    136 transcriptome
    137 transcriptomics
    138 treatment
    139 unique regulatory patterns
    140 unique set
    141 unknown gene functions
    142 variety
    143 vegetables
    144 schema:name Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces
    145 schema:pagination 353
    146 schema:productId N2ad1bc22cfa54f6f85691c25d7983e5b
    147 N96483a1e3e4f4b57a8df9af1b78579ef
    148 Na6ac96eb6b7c4848992ce91aa4b44408
    149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034040295
    150 https://doi.org/10.1186/1471-2164-15-353
    151 schema:sdDatePublished 2022-09-02T15:57
    152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    153 schema:sdPublisher N5a93afa902b14c4d8d17b1c8042db475
    154 schema:url https://doi.org/10.1186/1471-2164-15-353
    155 sgo:license sg:explorer/license/
    156 sgo:sdDataset articles
    157 rdf:type schema:ScholarlyArticle
    158 N02386b9eb3e34589bb90315b288e0d09 rdf:first sg:person.0767764126.02
    159 rdf:rest rdf:nil
    160 N0b7c0353599f4abb811b46cb61b3ee32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Cattle
    162 rdf:type schema:DefinedTerm
    163 N0eb5c39bbf264a478e81e5181e794c44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Escherichia coli O157
    165 rdf:type schema:DefinedTerm
    166 N2ad1bc22cfa54f6f85691c25d7983e5b schema:name pubmed_id
    167 schema:value 24885796
    168 rdf:type schema:PropertyValue
    169 N374ab76da8a647549de3fb5e26e4a6f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name High-Throughput Nucleotide Sequencing
    171 rdf:type schema:DefinedTerm
    172 N4a341edd3e8240e28e922922a7b1cae3 rdf:first sg:person.0613232776.75
    173 rdf:rest Nedc9131b43394d349f3fa4ca365d7096
    174 N4b1675a5ac324aaab597aff22c075d1e rdf:first sg:person.01167132061.21
    175 rdf:rest N02386b9eb3e34589bb90315b288e0d09
    176 N4bbbbd05c7eb4616b8a02d6fabea78ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Transcriptome
    178 rdf:type schema:DefinedTerm
    179 N5a93afa902b14c4d8d17b1c8042db475 schema:name Springer Nature - SN SciGraph project
    180 rdf:type schema:Organization
    181 N5fe16998596a444196a52e8f7b21c4e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Raphanus
    183 rdf:type schema:DefinedTerm
    184 N6281a7f8c4d6468b9b495620996fe666 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Animals
    186 rdf:type schema:DefinedTerm
    187 N6c7e96be65b540fb83272587e9bfdcaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Hydrogen-Ion Concentration
    189 rdf:type schema:DefinedTerm
    190 N7468b63b1fb8462f902fe10fc1ef276b schema:volumeNumber 15
    191 rdf:type schema:PublicationVolume
    192 N7f7e068bc375421cba1bb6b2fc1da16e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Gene Library
    194 rdf:type schema:DefinedTerm
    195 N96483a1e3e4f4b57a8df9af1b78579ef schema:name doi
    196 schema:value 10.1186/1471-2164-15-353
    197 rdf:type schema:PropertyValue
    198 N984b38a2a2b14d07bbe1e4f7bdea9544 schema:issueNumber 1
    199 rdf:type schema:PublicationIssue
    200 Na646a7296acb48c0ab798543024fbb90 rdf:first sg:person.01163305730.73
    201 rdf:rest Ne3f8a0ac1cd24933917d75138b948d46
    202 Na6ac96eb6b7c4848992ce91aa4b44408 schema:name dimensions_id
    203 schema:value pub.1034040295
    204 rdf:type schema:PropertyValue
    205 Nb44795a751f34a68a5841379309162a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Sequence Analysis, RNA
    207 rdf:type schema:DefinedTerm
    208 Nd68e237f8b644f04a6858d47a7e4aa77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Anti-Bacterial Agents
    210 rdf:type schema:DefinedTerm
    211 Nddda96404249431f8a51248bf7e8ead4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Virulence Factors
    213 rdf:type schema:DefinedTerm
    214 Ne3f8a0ac1cd24933917d75138b948d46 rdf:first sg:person.0635776571.01
    215 rdf:rest N4b1675a5ac324aaab597aff22c075d1e
    216 Nedc9131b43394d349f3fa4ca365d7096 rdf:first sg:person.01366261267.48
    217 rdf:rest Na646a7296acb48c0ab798543024fbb90
    218 Nfad3db4a32494c889a8ee2a2fe8e4770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Humans
    220 rdf:type schema:DefinedTerm
    221 Nfbd4120896954038b9422f81415d795c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Escherichia coli Proteins
    223 rdf:type schema:DefinedTerm
    224 Nfbe8d5930d124bf99a95fe6b039a97a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Feces
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Biological Sciences
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Genetics
    232 rdf:type schema:DefinedTerm
    233 sg:journal.1023790 schema:issn 1471-2164
    234 schema:name BMC Genomics
    235 schema:publisher Springer Nature
    236 rdf:type schema:Periodical
    237 sg:person.01163305730.73 schema:affiliation grid-institutes:grid.6582.9
    238 schema:familyName Schober
    239 schema:givenName Steffen
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163305730.73
    241 rdf:type schema:Person
    242 sg:person.01167132061.21 schema:affiliation grid-institutes:grid.6936.a
    243 schema:familyName Scherer
    244 schema:givenName Siegfried
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167132061.21
    246 rdf:type schema:Person
    247 sg:person.01366261267.48 schema:affiliation grid-institutes:grid.9811.1
    248 schema:familyName Simon
    249 schema:givenName Svenja
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366261267.48
    251 rdf:type schema:Person
    252 sg:person.0613232776.75 schema:affiliation grid-institutes:grid.6936.a
    253 schema:familyName Landstorfer
    254 schema:givenName Richard
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613232776.75
    256 rdf:type schema:Person
    257 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
    258 schema:familyName Keim
    259 schema:givenName Daniel
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
    261 rdf:type schema:Person
    262 sg:person.0767764126.02 schema:affiliation grid-institutes:grid.6936.a
    263 schema:familyName Neuhaus
    264 schema:givenName Klaus
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767764126.02
    266 rdf:type schema:Person
    267 sg:pub.10.1007/s00248-010-9663-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011211377
    268 https://doi.org/10.1007/s00248-010-9663-0
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s00284-010-9862-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048400112
    271 https://doi.org/10.1007/s00284-010-9862-4
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s00438-010-0578-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040232546
    274 https://doi.org/10.1007/s00438-010-0578-8
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/ismej.2008.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031430876
    277 https://doi.org/10.1038/ismej.2008.24
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    280 https://doi.org/10.1038/nmeth.1226
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nrmicro2109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050633398
    283 https://doi.org/10.1038/nrmicro2109
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nrmicro2265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970366
    286 https://doi.org/10.1038/nrmicro2265
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nrmicro818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011876605
    289 https://doi.org/10.1038/nrmicro818
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1186/1471-2164-12-332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004527512
    292 https://doi.org/10.1186/1471-2164-12-332
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1186/1471-2164-12-558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013720956
    295 https://doi.org/10.1186/1471-2164-12-558
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1186/1471-2164-13-734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018646208
    298 https://doi.org/10.1186/1471-2164-13-734
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1186/1471-2180-12-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002499121
    301 https://doi.org/10.1186/1471-2180-12-103
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/1475-2859-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037203144
    304 https://doi.org/10.1186/1475-2859-6-31
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    307 https://doi.org/10.1186/gb-2004-5-10-r80
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    310 https://doi.org/10.1186/gb-2009-10-3-r25
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
    313 https://doi.org/10.1186/gb-2010-11-8-r86
    314 rdf:type schema:CreativeWork
    315 grid-institutes:grid.6582.9 schema:alternateName Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
    316 schema:name Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
    317 rdf:type schema:Organization
    318 grid-institutes:grid.6936.a schema:alternateName Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350, Freising, Germany
    319 schema:name Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350, Freising, Germany
    320 rdf:type schema:Organization
    321 grid-institutes:grid.9811.1 schema:alternateName Lehrstuhl für Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universität Konstanz, Box 78, D-78457, Konstanz, Germany
    322 schema:name Lehrstuhl für Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universität Konstanz, Box 78, D-78457, Konstanz, Germany
    323 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...