Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-09

AUTHORS

Richard Landstorfer, Svenja Simon, Steffen Schober, Daniel Keim, Siegfried Scherer, Klaus Neuhaus

ABSTRACT

BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. More... »

PAGES

353

References to SciGraph publications

  • 2011-06-28. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation in BMC GENOMICS
  • 2010-10-01. Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation in MOLECULAR GENETICS AND GENOMICS
  • 2004-09-15. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2011-01-09. Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7 in CURRENT MICROBIOLOGY
  • 2010-04-16. Transfer of Enteric Pathogens to Successive Habitats as Part of Microbial Cycles in MICROBIAL ECOLOGY
  • 2007-10-02. Production of L-carnitine by secondary metabolism of bacteria in MICROBIAL CELL FACTORIES
  • 2009-12-07. Molecular mechanisms of Escherichia coli pathogenicity in NATURE REVIEWS MICROBIOLOGY
  • 2012-12-27. How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? in BMC GENOMICS
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2012-06-12. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells in BMC MICROBIOLOGY
  • 2004-02. Pathogenic Escherichia coli in NATURE REVIEWS MICROBIOLOGY
  • 2009-03-04. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2011-11-14. The MetJ regulon in gammaproteobacteria determined by comparative genomics methods in BMC GENOMICS
  • 2009-04. Principles of c-di-GMP signalling in bacteria in NATURE REVIEWS MICROBIOLOGY
  • 2010-08-25. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences in GENOME BIOLOGY
  • 2008-02-28. Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA) in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-15-353

    DOI

    http://dx.doi.org/10.1186/1471-2164-15-353

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034040295

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24885796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cattle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli O157", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feces", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen-Ion Concentration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Raphanus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Virulence Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Landstorfer", 
            "givenName": "Richard", 
            "id": "sg:person.0613232776.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613232776.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simon", 
            "givenName": "Svenja", 
            "id": "sg:person.01366261267.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366261267.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Nachrichtentechnik, Universit\u00e4t Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institut f\u00fcr Nachrichtentechnik, Universit\u00e4t Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schober", 
            "givenName": "Steffen", 
            "id": "sg:person.01163305730.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163305730.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Lehrstuhl f\u00fcr Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, Box 78, D-78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keim", 
            "givenName": "Daniel", 
            "id": "sg:person.0635776571.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scherer", 
            "givenName": "Siegfried", 
            "id": "sg:person.01167132061.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167132061.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85350, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neuhaus", 
            "givenName": "Klaus", 
            "id": "sg:person.0767764126.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767764126.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970366", 
              "https://doi.org/10.1038/nrmicro2265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-010-0578-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040232546", 
              "https://doi.org/10.1007/s00438-010-0578-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046347776", 
              "https://doi.org/10.1186/gb-2010-11-8-r86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011876605", 
              "https://doi.org/10.1038/nrmicro818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-6-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037203144", 
              "https://doi.org/10.1186/1475-2859-6-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-010-9663-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011211377", 
              "https://doi.org/10.1007/s00248-010-9663-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-12-103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002499121", 
              "https://doi.org/10.1186/1471-2180-12-103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00284-010-9862-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048400112", 
              "https://doi.org/10.1007/s00284-010-9862-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013720956", 
              "https://doi.org/10.1186/1471-2164-12-558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050633398", 
              "https://doi.org/10.1038/nrmicro2109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004527512", 
              "https://doi.org/10.1186/1471-2164-12-332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031430876", 
              "https://doi.org/10.1038/ismej.2008.24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018646208", 
              "https://doi.org/10.1186/1471-2164-13-734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-09", 
        "datePublishedReg": "2014-05-09", 
        "description": "BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15\u00b0C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-15-353", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "hypothetical genes", 
          "enterohemorrhagic Escherichia coli O157", 
          "minimal medium", 
          "strand-specific transcriptomes", 
          "minority of genes", 
          "unknown gene functions", 
          "LB medium", 
          "Illumina system", 
          "unique regulatory patterns", 
          "M9 minimal medium", 
          "cattle feces", 
          "higher transcriptional activity", 
          "environmental transcriptomics", 
          "transcriptional signals", 
          "gene function", 
          "significant genome", 
          "abiotic conditions", 
          "different environmental conditions", 
          "regulatory patterns", 
          "transcriptional activity", 
          "sequencing reads", 
          "Escherichia coli O157", 
          "genes", 
          "background transcription", 
          "presence of antibiotics", 
          "radish sprouts", 
          "genetic determinants", 
          "environmental conditions", 
          "human host", 
          "island lee", 
          "coli O157", 
          "environmental factors", 
          "new role", 
          "agar plates", 
          "active biofilm", 
          "sprouts", 
          "EHEC", 
          "environmental functions", 
          "leaf juice", 
          "transcriptome", 
          "genome", 
          "transcriptomics", 
          "transcription", 
          "ecology", 
          "unique set", 
          "animal products", 
          "H7", 
          "phages", 
          "reads", 
          "annotation", 
          "pathogens", 
          "biofilms", 
          "host", 
          "O157", 
          "feces", 
          "induction", 
          "fruit", 
          "function", 
          "AzoR", 
          "strains", 
          "infection source", 
          "antibiotics", 
          "medium", 
          "role", 
          "activity", 
          "patterns", 
          "conditions", 
          "variety", 
          "determinants", 
          "signals", 
          "vegetables", 
          "presence", 
          "pH7", 
          "factors", 
          "statistical methods", 
          "high correlation", 
          "products", 
          "system", 
          "future research", 
          "source", 
          "pH4", 
          "lb", 
          "surface", 
          "pH9", 
          "comparison", 
          "set", 
          "treatment", 
          "correlation", 
          "approach", 
          "third", 
          "instances", 
          "research", 
          "juice", 
          "Lee", 
          "plate", 
          "appropriate technique", 
          "ConclusionsSince", 
          "method", 
          "technique", 
          "assumption", 
          "minority", 
          "solids"
        ], 
        "name": "Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces", 
        "pagination": "353", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034040295"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-15-353"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24885796"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-15-353", 
          "https://app.dimensions.ai/details/publication/pub.1034040295"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_621.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-15-353"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-353'


     

    This table displays all metadata directly associated to this object as RDF triples.

    323 TRIPLES      21 PREDICATES      157 URIs      133 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-15-353 schema:about N05b2ef477f184bb88d01e71171804986
    2 N1a34d341ee714af58ae132f37f01c396
    3 N3187270d4dce40fbbd54dfbe541b6d54
    4 N35b68185813b4a808356ccd2e348df15
    5 N5b032fc042004fcbb18b97352ce5ab69
    6 N78206207b66c470596a168f5a991f0e2
    7 N926d7b41cce64a74a3d6f8cb47d8f8ba
    8 N99709b2a40ff43f880f5c9ad345fb34d
    9 Na3586f5362304519b93d589677427962
    10 Nb26dfe75f86b4cd484d0ee82c376f025
    11 Nb99745799fe04bb89625b64e69528732
    12 Nccc2ec348a914315be3d1b88d36a054d
    13 Ne6f1dcdd196c41f99d4e393d19e82e95
    14 Nf963636f58f14c99857ded8f34f2f806
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author N603b691e2a2443e4bef31f4e2620e91a
    18 schema:citation sg:pub.10.1007/s00248-010-9663-0
    19 sg:pub.10.1007/s00284-010-9862-4
    20 sg:pub.10.1007/s00438-010-0578-8
    21 sg:pub.10.1038/ismej.2008.24
    22 sg:pub.10.1038/nmeth.1226
    23 sg:pub.10.1038/nrmicro2109
    24 sg:pub.10.1038/nrmicro2265
    25 sg:pub.10.1038/nrmicro818
    26 sg:pub.10.1186/1471-2164-12-332
    27 sg:pub.10.1186/1471-2164-12-558
    28 sg:pub.10.1186/1471-2164-13-734
    29 sg:pub.10.1186/1471-2180-12-103
    30 sg:pub.10.1186/1475-2859-6-31
    31 sg:pub.10.1186/gb-2004-5-10-r80
    32 sg:pub.10.1186/gb-2009-10-3-r25
    33 sg:pub.10.1186/gb-2010-11-8-r86
    34 schema:datePublished 2014-05-09
    35 schema:datePublishedReg 2014-05-09
    36 schema:description BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N08a4aebe06e24062b4bc3336d75a1d70
    40 Ne802e4e5fc394acca8c8fb7c97414580
    41 sg:journal.1023790
    42 schema:keywords AzoR
    43 ConclusionsSince
    44 EHEC
    45 Escherichia coli O157
    46 H7
    47 Illumina system
    48 LB medium
    49 Lee
    50 M9 minimal medium
    51 O157
    52 abiotic conditions
    53 active biofilm
    54 activity
    55 agar plates
    56 animal products
    57 annotation
    58 antibiotics
    59 approach
    60 appropriate technique
    61 assumption
    62 background transcription
    63 biofilms
    64 cattle feces
    65 coli O157
    66 comparison
    67 conditions
    68 correlation
    69 determinants
    70 different environmental conditions
    71 ecology
    72 enterohemorrhagic Escherichia coli O157
    73 environmental conditions
    74 environmental factors
    75 environmental functions
    76 environmental transcriptomics
    77 factors
    78 feces
    79 fruit
    80 function
    81 future research
    82 gene function
    83 genes
    84 genetic determinants
    85 genome
    86 high correlation
    87 higher transcriptional activity
    88 host
    89 human host
    90 hypothetical genes
    91 induction
    92 infection source
    93 instances
    94 island lee
    95 juice
    96 lb
    97 leaf juice
    98 medium
    99 method
    100 minimal medium
    101 minority
    102 minority of genes
    103 new role
    104 pH4
    105 pH7
    106 pH9
    107 pathogens
    108 patterns
    109 phages
    110 plate
    111 presence
    112 presence of antibiotics
    113 products
    114 radish sprouts
    115 reads
    116 regulatory patterns
    117 research
    118 role
    119 sequencing reads
    120 set
    121 signals
    122 significant genome
    123 solids
    124 source
    125 sprouts
    126 statistical methods
    127 strains
    128 strand-specific transcriptomes
    129 surface
    130 system
    131 technique
    132 third
    133 transcription
    134 transcriptional activity
    135 transcriptional signals
    136 transcriptome
    137 transcriptomics
    138 treatment
    139 unique regulatory patterns
    140 unique set
    141 unknown gene functions
    142 variety
    143 vegetables
    144 schema:name Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces
    145 schema:pagination 353
    146 schema:productId N0dbc33f7d31f421aacbf176244e62f57
    147 N82f3b9ab479c416cae0ca840ce1ba894
    148 Nbf63670679ca4070adb6507f27af91d4
    149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034040295
    150 https://doi.org/10.1186/1471-2164-15-353
    151 schema:sdDatePublished 2022-11-24T20:58
    152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    153 schema:sdPublisher N199b28517fd347cf8f91b8d5d71a4775
    154 schema:url https://doi.org/10.1186/1471-2164-15-353
    155 sgo:license sg:explorer/license/
    156 sgo:sdDataset articles
    157 rdf:type schema:ScholarlyArticle
    158 N05b2ef477f184bb88d01e71171804986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name High-Throughput Nucleotide Sequencing
    160 rdf:type schema:DefinedTerm
    161 N08a4aebe06e24062b4bc3336d75a1d70 schema:issueNumber 1
    162 rdf:type schema:PublicationIssue
    163 N08dde326f337404da53b07dd078a4393 rdf:first sg:person.01366261267.48
    164 rdf:rest Nb24e69a1f7ec44e38d072dce1c3c26d2
    165 N0dbc33f7d31f421aacbf176244e62f57 schema:name doi
    166 schema:value 10.1186/1471-2164-15-353
    167 rdf:type schema:PropertyValue
    168 N199b28517fd347cf8f91b8d5d71a4775 schema:name Springer Nature - SN SciGraph project
    169 rdf:type schema:Organization
    170 N1a34d341ee714af58ae132f37f01c396 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Anti-Bacterial Agents
    172 rdf:type schema:DefinedTerm
    173 N3187270d4dce40fbbd54dfbe541b6d54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Animals
    175 rdf:type schema:DefinedTerm
    176 N35b68185813b4a808356ccd2e348df15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Virulence Factors
    178 rdf:type schema:DefinedTerm
    179 N5b032fc042004fcbb18b97352ce5ab69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Humans
    181 rdf:type schema:DefinedTerm
    182 N603b691e2a2443e4bef31f4e2620e91a rdf:first sg:person.0613232776.75
    183 rdf:rest N08dde326f337404da53b07dd078a4393
    184 N78206207b66c470596a168f5a991f0e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Cattle
    186 rdf:type schema:DefinedTerm
    187 N82f3b9ab479c416cae0ca840ce1ba894 schema:name pubmed_id
    188 schema:value 24885796
    189 rdf:type schema:PropertyValue
    190 N85049b304ce24a0e9250de2dc421a2e9 rdf:first sg:person.0767764126.02
    191 rdf:rest rdf:nil
    192 N8a7d169119724ac58a76a68a2bd01d62 rdf:first sg:person.0635776571.01
    193 rdf:rest Na9f6348d75e84d6e89573e34edb629bf
    194 N926d7b41cce64a74a3d6f8cb47d8f8ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Escherichia coli Proteins
    196 rdf:type schema:DefinedTerm
    197 N99709b2a40ff43f880f5c9ad345fb34d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Sequence Analysis, RNA
    199 rdf:type schema:DefinedTerm
    200 Na3586f5362304519b93d589677427962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Raphanus
    202 rdf:type schema:DefinedTerm
    203 Na9f6348d75e84d6e89573e34edb629bf rdf:first sg:person.01167132061.21
    204 rdf:rest N85049b304ce24a0e9250de2dc421a2e9
    205 Nb24e69a1f7ec44e38d072dce1c3c26d2 rdf:first sg:person.01163305730.73
    206 rdf:rest N8a7d169119724ac58a76a68a2bd01d62
    207 Nb26dfe75f86b4cd484d0ee82c376f025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Escherichia coli O157
    209 rdf:type schema:DefinedTerm
    210 Nb99745799fe04bb89625b64e69528732 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Transcriptome
    212 rdf:type schema:DefinedTerm
    213 Nbf63670679ca4070adb6507f27af91d4 schema:name dimensions_id
    214 schema:value pub.1034040295
    215 rdf:type schema:PropertyValue
    216 Nccc2ec348a914315be3d1b88d36a054d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Feces
    218 rdf:type schema:DefinedTerm
    219 Ne6f1dcdd196c41f99d4e393d19e82e95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Hydrogen-Ion Concentration
    221 rdf:type schema:DefinedTerm
    222 Ne802e4e5fc394acca8c8fb7c97414580 schema:volumeNumber 15
    223 rdf:type schema:PublicationVolume
    224 Nf963636f58f14c99857ded8f34f2f806 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Gene Library
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Biological Sciences
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Genetics
    232 rdf:type schema:DefinedTerm
    233 sg:journal.1023790 schema:issn 1471-2164
    234 schema:name BMC Genomics
    235 schema:publisher Springer Nature
    236 rdf:type schema:Periodical
    237 sg:person.01163305730.73 schema:affiliation grid-institutes:grid.6582.9
    238 schema:familyName Schober
    239 schema:givenName Steffen
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163305730.73
    241 rdf:type schema:Person
    242 sg:person.01167132061.21 schema:affiliation grid-institutes:grid.6936.a
    243 schema:familyName Scherer
    244 schema:givenName Siegfried
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167132061.21
    246 rdf:type schema:Person
    247 sg:person.01366261267.48 schema:affiliation grid-institutes:grid.9811.1
    248 schema:familyName Simon
    249 schema:givenName Svenja
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366261267.48
    251 rdf:type schema:Person
    252 sg:person.0613232776.75 schema:affiliation grid-institutes:grid.6936.a
    253 schema:familyName Landstorfer
    254 schema:givenName Richard
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613232776.75
    256 rdf:type schema:Person
    257 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
    258 schema:familyName Keim
    259 schema:givenName Daniel
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
    261 rdf:type schema:Person
    262 sg:person.0767764126.02 schema:affiliation grid-institutes:grid.6936.a
    263 schema:familyName Neuhaus
    264 schema:givenName Klaus
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767764126.02
    266 rdf:type schema:Person
    267 sg:pub.10.1007/s00248-010-9663-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011211377
    268 https://doi.org/10.1007/s00248-010-9663-0
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s00284-010-9862-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048400112
    271 https://doi.org/10.1007/s00284-010-9862-4
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s00438-010-0578-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040232546
    274 https://doi.org/10.1007/s00438-010-0578-8
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/ismej.2008.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031430876
    277 https://doi.org/10.1038/ismej.2008.24
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    280 https://doi.org/10.1038/nmeth.1226
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nrmicro2109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050633398
    283 https://doi.org/10.1038/nrmicro2109
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nrmicro2265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970366
    286 https://doi.org/10.1038/nrmicro2265
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nrmicro818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011876605
    289 https://doi.org/10.1038/nrmicro818
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1186/1471-2164-12-332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004527512
    292 https://doi.org/10.1186/1471-2164-12-332
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1186/1471-2164-12-558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013720956
    295 https://doi.org/10.1186/1471-2164-12-558
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1186/1471-2164-13-734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018646208
    298 https://doi.org/10.1186/1471-2164-13-734
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1186/1471-2180-12-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002499121
    301 https://doi.org/10.1186/1471-2180-12-103
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/1475-2859-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037203144
    304 https://doi.org/10.1186/1475-2859-6-31
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    307 https://doi.org/10.1186/gb-2004-5-10-r80
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    310 https://doi.org/10.1186/gb-2009-10-3-r25
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
    313 https://doi.org/10.1186/gb-2010-11-8-r86
    314 rdf:type schema:CreativeWork
    315 grid-institutes:grid.6582.9 schema:alternateName Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
    316 schema:name Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
    317 rdf:type schema:Organization
    318 grid-institutes:grid.6936.a schema:alternateName Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350, Freising, Germany
    319 schema:name Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350, Freising, Germany
    320 rdf:type schema:Organization
    321 grid-institutes:grid.9811.1 schema:alternateName Lehrstuhl für Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universität Konstanz, Box 78, D-78457, Konstanz, Germany
    322 schema:name Lehrstuhl für Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universität Konstanz, Box 78, D-78457, Konstanz, Germany
    323 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...