A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-04-27

AUTHORS

Wolfgang Fischer, Ute Breithaupt, Beate Kern, Stella I Smith, Carolin Spicher, Rainer Haas

ABSTRACT

BackgroundThe human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Its persistence in the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, but also by an unusual genetic variability which might account for the capability to adapt to changing environmental conditions during long-term colonization. This variability is reflected by the fact that almost each infected individual is colonized by a genetically unique strain. Strain-specific genes are dispersed throughout the genome, but clusters of genes organized as genomic islands may also collectively be present or absent.ResultsWe have comparatively analysed such clusters, which are commonly termed plasticity zones, in a high number of H. pylori strains of varying geographical origin. We show that these regions contain fixed gene sets, rather than being true regions of genome plasticity, but two different types and several subtypes with partly diverging gene content can be distinguished. Their genetic diversity is incongruent with variations in the rest of the genome, suggesting that they are subject to horizontal gene transfer within H. pylori populations. We identified 40 distinct integration sites in 45 genome sequences, with a conserved heptanucleotide motif that seems to be the minimal requirement for integration.ConclusionsThe significant number of possible integration sites, together with the requirement for a short conserved integration motif and the high level of gene conservation, indicates that these elements are best described as integrating conjugative elements (ICEs) with an intermediate integration site specificity. More... »

PAGES

310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-15-310

DOI

http://dx.doi.org/10.1186/1471-2164-15-310

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003930985

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24767410


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer, Horizontal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Helicobacter pylori", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Wolfgang", 
        "id": "sg:person.01300565575.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300565575.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breithaupt", 
        "givenName": "Ute", 
        "id": "sg:person.01164337175.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164337175.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kern", 
        "givenName": "Beate", 
        "id": "sg:person.01331376326.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331376326.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, PMB2013, Yaba, Lagos, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.416197.c", 
          "name": [
            "Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, PMB2013, Yaba, Lagos, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Stella I", 
        "id": "sg:person.016160751434.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016160751434.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spicher", 
        "givenName": "Carolin", 
        "id": "sg:person.0654105426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654105426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer-Institut f\u00fcr Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universit\u00e4t, D-80336, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haas", 
        "givenName": "Rainer", 
        "id": "sg:person.01127414674.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127414674.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047846730", 
          "https://doi.org/10.1038/nature05562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031204788", 
          "https://doi.org/10.1038/16495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000911492", 
          "https://doi.org/10.1038/nrmicro1658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9716-42-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016595143", 
          "https://doi.org/10.1186/1297-9716-42-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-11-104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019412692", 
          "https://doi.org/10.1186/1471-2180-11-104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025423758", 
          "https://doi.org/10.1186/1471-2164-11-368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029485597", 
          "https://doi.org/10.1038/nrc703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022443334", 
          "https://doi.org/10.1038/nrmicro2382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011532634", 
          "https://doi.org/10.1038/nrmicro955"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04-27", 
    "datePublishedReg": "2014-04-27", 
    "description": "BackgroundThe human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Its persistence in the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, but also by an unusual genetic variability which might account for the capability to adapt to changing environmental conditions during long-term colonization. This variability is reflected by the fact that almost each infected individual is colonized by a genetically unique strain. Strain-specific genes are dispersed throughout the genome, but clusters of genes organized as genomic islands may also collectively be present or absent.ResultsWe have comparatively analysed such clusters, which are commonly termed plasticity zones, in a high number of H. pylori strains of varying geographical origin. We show that these regions contain fixed gene sets, rather than being true regions of genome plasticity, but two different types and several subtypes with partly diverging gene content can be distinguished. Their genetic diversity is incongruent with variations in the rest of the genome, suggesting that they are subject to horizontal gene transfer within H. pylori populations. We identified 40 distinct integration sites in 45 genome sequences, with a conserved heptanucleotide motif that seems to be the minimal requirement for integration.ConclusionsThe significant number of possible integration sites, together with the requirement for a short conserved integration motif and the high level of gene conservation, indicates that these elements are best described as integrating conjugative elements (ICEs) with an intermediate integration site specificity.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-15-310", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "integration sites", 
      "human gastric pathogen Helicobacter pylori", 
      "conjugative elements", 
      "integration site specificity", 
      "horizontal gene transfer", 
      "distinct integration sites", 
      "strain-specific genes", 
      "cluster of genes", 
      "plasticity zone", 
      "gastric pathogen Helicobacter pylori", 
      "possible integration sites", 
      "pathogen Helicobacter pylori", 
      "gene conservation", 
      "genome plasticity", 
      "gene content", 
      "genomic islands", 
      "heptanucleotide motif", 
      "genetic diversity", 
      "genome sequence", 
      "H. pylori populations", 
      "gene sets", 
      "genetic variability", 
      "integration motif", 
      "integration specificity", 
      "long-term colonization", 
      "gene transfer", 
      "environmental conditions", 
      "genome", 
      "site specificity", 
      "genes", 
      "geographical origin", 
      "immune evasion", 
      "motif", 
      "unique strains", 
      "minimal requirements", 
      "H. pylori strains", 
      "comprehensive analysis", 
      "higher number", 
      "bacterial infections", 
      "strains", 
      "chronic bacterial infection", 
      "diversity", 
      "conservation", 
      "sites", 
      "colonization", 
      "immune modulation", 
      "high levels", 
      "specificity", 
      "sequence", 
      "pylori strains", 
      "plasticity", 
      "islands", 
      "region", 
      "clusters", 
      "Helicobacter pylori", 
      "evasion", 
      "such clusters", 
      "stomach mucosa", 
      "variability", 
      "persistence", 
      "mechanism", 
      "population", 
      "elements", 
      "origin", 
      "modulation", 
      "variation", 
      "significant number", 
      "number", 
      "zone", 
      "subtypes", 
      "levels", 
      "individuals", 
      "infection", 
      "content", 
      "different types", 
      "analysis", 
      "types", 
      "ResultsWe", 
      "transfer", 
      "pylori", 
      "conditions", 
      "requirements", 
      "set", 
      "fact", 
      "integration", 
      "paradigm", 
      "rest", 
      "mucosa", 
      "capability", 
      "true region"
    ], 
    "name": "A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity", 
    "pagination": "310", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003930985"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-15-310"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24767410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-15-310", 
      "https://app.dimensions.ai/details/publication/pub.1003930985"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_621.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-15-310"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-310'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-310'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-310'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-310'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      130 URIs      113 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-15-310 schema:about N1eb4a681aa874256bd733bcba1826dcd
2 N6388820589ab42edad3934ea2c4afa6e
3 N7083c6239d8e4023a43e5ce16bcb56e8
4 Na487867435064fceba74e9fc5b7ce447
5 Nc5d54f499a10487a98a496b08c765dec
6 Nf056bb647a44497eb76d0621ac45c59f
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author Na7d7e8b4c57c427ab8cc902494616bac
10 schema:citation sg:pub.10.1038/16495
11 sg:pub.10.1038/nature05562
12 sg:pub.10.1038/nrc703
13 sg:pub.10.1038/nrmicro1658
14 sg:pub.10.1038/nrmicro2382
15 sg:pub.10.1038/nrmicro955
16 sg:pub.10.1186/1297-9716-42-51
17 sg:pub.10.1186/1471-2164-11-368
18 sg:pub.10.1186/1471-2180-11-104
19 schema:datePublished 2014-04-27
20 schema:datePublishedReg 2014-04-27
21 schema:description BackgroundThe human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Its persistence in the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, but also by an unusual genetic variability which might account for the capability to adapt to changing environmental conditions during long-term colonization. This variability is reflected by the fact that almost each infected individual is colonized by a genetically unique strain. Strain-specific genes are dispersed throughout the genome, but clusters of genes organized as genomic islands may also collectively be present or absent.ResultsWe have comparatively analysed such clusters, which are commonly termed plasticity zones, in a high number of H. pylori strains of varying geographical origin. We show that these regions contain fixed gene sets, rather than being true regions of genome plasticity, but two different types and several subtypes with partly diverging gene content can be distinguished. Their genetic diversity is incongruent with variations in the rest of the genome, suggesting that they are subject to horizontal gene transfer within H. pylori populations. We identified 40 distinct integration sites in 45 genome sequences, with a conserved heptanucleotide motif that seems to be the minimal requirement for integration.ConclusionsThe significant number of possible integration sites, together with the requirement for a short conserved integration motif and the high level of gene conservation, indicates that these elements are best described as integrating conjugative elements (ICEs) with an intermediate integration site specificity.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N6765bd3e5b9145c780dc21c20ed9150a
25 N7b14e6445ffe4c418928e6a6b089f7e1
26 sg:journal.1023790
27 schema:keywords H. pylori populations
28 H. pylori strains
29 Helicobacter pylori
30 ResultsWe
31 analysis
32 bacterial infections
33 capability
34 chronic bacterial infection
35 cluster of genes
36 clusters
37 colonization
38 comprehensive analysis
39 conditions
40 conjugative elements
41 conservation
42 content
43 different types
44 distinct integration sites
45 diversity
46 elements
47 environmental conditions
48 evasion
49 fact
50 gastric pathogen Helicobacter pylori
51 gene conservation
52 gene content
53 gene sets
54 gene transfer
55 genes
56 genetic diversity
57 genetic variability
58 genome
59 genome plasticity
60 genome sequence
61 genomic islands
62 geographical origin
63 heptanucleotide motif
64 high levels
65 higher number
66 horizontal gene transfer
67 human gastric pathogen Helicobacter pylori
68 immune evasion
69 immune modulation
70 individuals
71 infection
72 integration
73 integration motif
74 integration site specificity
75 integration sites
76 integration specificity
77 islands
78 levels
79 long-term colonization
80 mechanism
81 minimal requirements
82 modulation
83 motif
84 mucosa
85 number
86 origin
87 paradigm
88 pathogen Helicobacter pylori
89 persistence
90 plasticity
91 plasticity zone
92 population
93 possible integration sites
94 pylori
95 pylori strains
96 region
97 requirements
98 rest
99 sequence
100 set
101 significant number
102 site specificity
103 sites
104 specificity
105 stomach mucosa
106 strain-specific genes
107 strains
108 subtypes
109 such clusters
110 transfer
111 true region
112 types
113 unique strains
114 variability
115 variation
116 zone
117 schema:name A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity
118 schema:pagination 310
119 schema:productId N69da6582add14dceb8b15f1357af829e
120 N907467d1715d4c8299ac8fffdfb9417e
121 Nde9a6f0b01214c3f89e4019a5aa0d769
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003930985
123 https://doi.org/10.1186/1471-2164-15-310
124 schema:sdDatePublished 2022-08-04T17:02
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N792df5cb3a2b42afb713e98e9c539cb3
127 schema:url https://doi.org/10.1186/1471-2164-15-310
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N075bb39242ef4ae09347b1fa8a9acfe8 rdf:first sg:person.01164337175.98
132 rdf:rest Nda895b0f1fcf4c05af7bb841b219d4e8
133 N1eb4a681aa874256bd733bcba1826dcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Genes, Bacterial
135 rdf:type schema:DefinedTerm
136 N5ee170b7e1fa45f588ef8f495a42d99a rdf:first sg:person.0654105426.21
137 rdf:rest Na0172f3f73a24d3daeb6d48bbeb17cc4
138 N6388820589ab42edad3934ea2c4afa6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Phylogeny
140 rdf:type schema:DefinedTerm
141 N6765bd3e5b9145c780dc21c20ed9150a schema:volumeNumber 15
142 rdf:type schema:PublicationVolume
143 N69da6582add14dceb8b15f1357af829e schema:name doi
144 schema:value 10.1186/1471-2164-15-310
145 rdf:type schema:PropertyValue
146 N7083c6239d8e4023a43e5ce16bcb56e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Gene Transfer, Horizontal
148 rdf:type schema:DefinedTerm
149 N792df5cb3a2b42afb713e98e9c539cb3 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N7b14e6445ffe4c418928e6a6b089f7e1 schema:issueNumber 1
152 rdf:type schema:PublicationIssue
153 N8a931280f88c4419904411211c7ec9aa rdf:first sg:person.016160751434.96
154 rdf:rest N5ee170b7e1fa45f588ef8f495a42d99a
155 N907467d1715d4c8299ac8fffdfb9417e schema:name dimensions_id
156 schema:value pub.1003930985
157 rdf:type schema:PropertyValue
158 Na0172f3f73a24d3daeb6d48bbeb17cc4 rdf:first sg:person.01127414674.14
159 rdf:rest rdf:nil
160 Na487867435064fceba74e9fc5b7ce447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Helicobacter pylori
162 rdf:type schema:DefinedTerm
163 Na7d7e8b4c57c427ab8cc902494616bac rdf:first sg:person.01300565575.05
164 rdf:rest N075bb39242ef4ae09347b1fa8a9acfe8
165 Nc5d54f499a10487a98a496b08c765dec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Geography
167 rdf:type schema:DefinedTerm
168 Nda895b0f1fcf4c05af7bb841b219d4e8 rdf:first sg:person.01331376326.09
169 rdf:rest N8a931280f88c4419904411211c7ec9aa
170 Nde9a6f0b01214c3f89e4019a5aa0d769 schema:name pubmed_id
171 schema:value 24767410
172 rdf:type schema:PropertyValue
173 Nf056bb647a44497eb76d0621ac45c59f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Molecular Sequence Data
175 rdf:type schema:DefinedTerm
176 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
177 schema:name Biological Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
180 schema:name Genetics
181 rdf:type schema:DefinedTerm
182 sg:journal.1023790 schema:issn 1471-2164
183 schema:name BMC Genomics
184 schema:publisher Springer Nature
185 rdf:type schema:Periodical
186 sg:person.01127414674.14 schema:affiliation grid-institutes:grid.5252.0
187 schema:familyName Haas
188 schema:givenName Rainer
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127414674.14
190 rdf:type schema:Person
191 sg:person.01164337175.98 schema:affiliation grid-institutes:grid.5252.0
192 schema:familyName Breithaupt
193 schema:givenName Ute
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164337175.98
195 rdf:type schema:Person
196 sg:person.01300565575.05 schema:affiliation grid-institutes:grid.5252.0
197 schema:familyName Fischer
198 schema:givenName Wolfgang
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300565575.05
200 rdf:type schema:Person
201 sg:person.01331376326.09 schema:affiliation grid-institutes:grid.5252.0
202 schema:familyName Kern
203 schema:givenName Beate
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331376326.09
205 rdf:type schema:Person
206 sg:person.016160751434.96 schema:affiliation grid-institutes:grid.416197.c
207 schema:familyName Smith
208 schema:givenName Stella I
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016160751434.96
210 rdf:type schema:Person
211 sg:person.0654105426.21 schema:affiliation grid-institutes:grid.5252.0
212 schema:familyName Spicher
213 schema:givenName Carolin
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654105426.21
215 rdf:type schema:Person
216 sg:pub.10.1038/16495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031204788
217 https://doi.org/10.1038/16495
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature05562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047846730
220 https://doi.org/10.1038/nature05562
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nrc703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029485597
223 https://doi.org/10.1038/nrc703
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nrmicro1658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000911492
226 https://doi.org/10.1038/nrmicro1658
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nrmicro2382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022443334
229 https://doi.org/10.1038/nrmicro2382
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nrmicro955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011532634
232 https://doi.org/10.1038/nrmicro955
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1297-9716-42-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016595143
235 https://doi.org/10.1186/1297-9716-42-51
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1471-2164-11-368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025423758
238 https://doi.org/10.1186/1471-2164-11-368
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1471-2180-11-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019412692
241 https://doi.org/10.1186/1471-2180-11-104
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.416197.c schema:alternateName Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, PMB2013, Yaba, Lagos, Nigeria
244 schema:name Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, PMB2013, Yaba, Lagos, Nigeria
245 rdf:type schema:Organization
246 grid-institutes:grid.5252.0 schema:alternateName Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, D-80336, Munich, Germany
247 schema:name Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, D-80336, Munich, Germany
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...