Ontology type: schema:ScholarlyArticle Open Access: True
2014-12
AUTHORSLi Shen, Ningyi Shao, Xiaochuan Liu, Eric Nestler
ABSTRACTBACKGROUND: Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. RESULTS: We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. CONCLUSIONS: We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data. More... »
PAGES284
http://scigraph.springernature.com/pub.10.1186/1471-2164-15-284
DOIhttp://dx.doi.org/10.1186/1471-2164-15-284
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006261518
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/24735413
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Data Mining",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Databases, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Embryonic Stem Cells",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Epigenomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "High-Throughput Nucleotide Sequencing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Promoter Regions, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, DNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, RNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Web Browser",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Workflow",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Icahn School of Medicine at Mount Sinai",
"id": "https://www.grid.ac/institutes/grid.59734.3c",
"name": [
"Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, USA"
],
"type": "Organization"
},
"familyName": "Shen",
"givenName": "Li",
"id": "sg:person.014303005140.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303005140.71"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Icahn School of Medicine at Mount Sinai",
"id": "https://www.grid.ac/institutes/grid.59734.3c",
"name": [
"Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, USA"
],
"type": "Organization"
},
"familyName": "Shao",
"givenName": "Ningyi",
"id": "sg:person.015423674477.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423674477.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Icahn School of Medicine at Mount Sinai",
"id": "https://www.grid.ac/institutes/grid.59734.3c",
"name": [
"Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, USA"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Xiaochuan",
"id": "sg:person.01243014363.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243014363.93"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Icahn School of Medicine at Mount Sinai",
"id": "https://www.grid.ac/institutes/grid.59734.3c",
"name": [
"Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, USA"
],
"type": "Organization"
},
"familyName": "Nestler",
"givenName": "Eric",
"id": "sg:person.01142573400.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142573400.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.cell.2007.12.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000099864"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.brainres.2006.09.025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000589146"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature10102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000816758",
"https://doi.org/10.1038/nature10102"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.140665.112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002292874"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature11232",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003040774",
"https://doi.org/10.1038/nature11232"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.stem.2013.02.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003553536"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pgen.1002154",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003857457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1170116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004667708"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1242/dev.037127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005137905"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cell.2013.03.035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005302017"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gks1236",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009297609"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cell.2008.04.043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011546580"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.4086505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011879039"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkn721",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013742279"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.stem.2011.01.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014599153"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1210597",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017751509"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkq1287",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018055921"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gks1048",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018129858"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq247",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018503617"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btt558",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018618539"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5808/gi.2013.11.2.60",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019175832"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.1754",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019307928",
"https://doi.org/10.1038/nbt.1754"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019717995"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0065598",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020364478"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1479-7364-2-4-266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020592660",
"https://doi.org/10.1186/1479-7364-2-4-266"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-12-155",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021180129",
"https://doi.org/10.1186/1471-2105-12-155"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.229102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022792016"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.78.1.143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022845037"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp352",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023014918"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2626",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023911485",
"https://doi.org/10.1038/nrg2626"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2626",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023911485",
"https://doi.org/10.1038/nrg2626"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq351",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025257348"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2795",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025284665",
"https://doi.org/10.1038/nrg2795"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2795",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025284665",
"https://doi.org/10.1038/nrg2795"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2011-12-8-r83",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025406648",
"https://doi.org/10.1186/gb-2011-12-8-r83"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/bts356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025907389"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg3080",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026954006",
"https://doi.org/10.1038/nrg3080"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2008-9-9-r137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027608848",
"https://doi.org/10.1186/gb-2008-9-9-r137"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrm3589",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028986515",
"https://doi.org/10.1038/nrm3589"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature11247",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029065430",
"https://doi.org/10.1038/nature11247"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nprot.2012.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030124536",
"https://doi.org/10.1038/nprot.2012.016"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cell.2006.02.041",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030427346"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0092-8674(81)90359-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033693792"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbs029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034311420"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.1357-12.2012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035910936"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036892131"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.1985",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037530750",
"https://doi.org/10.1038/nmeth.1985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp479",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039030761"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1083/jcb.94.2.253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039204250"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg3305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040199034",
"https://doi.org/10.1038/nrg3305"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature09934",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041070614",
"https://doi.org/10.1038/nature09934"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cell.2013.09.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041185259"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.092353.109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042159483"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature09906",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043304663",
"https://doi.org/10.1038/nature09906"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1184208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044565319"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gks595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044910032"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature10066",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045516695",
"https://doi.org/10.1038/nature10066"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2011-12-6-r54",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047606497",
"https://doi.org/10.1186/gb-2011-12-6-r54"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt1010-1045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048301228",
"https://doi.org/10.1038/nbt1010-1045"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2009-10-3-r25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049583368",
"https://doi.org/10.1186/gb-2009-10-3-r25"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ygeno.2008.07.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049637368"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.molcel.2011.04.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049664644"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1076997",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050318758"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq671",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051123116"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.322",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051265360",
"https://doi.org/10.1038/ng.322"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature11243",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053162355",
"https://doi.org/10.1038/nature11243"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btu638",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053282140"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2012-13-8-r77",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053472112",
"https://doi.org/10.1186/gb-2012-13-8-r77"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1179438",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062460575"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1179438",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062460575"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1198/000313002533",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064196948"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-12",
"datePublishedReg": "2014-12-01",
"description": "BACKGROUND: Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge.\nRESULTS: We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready.\nCONCLUSIONS: We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.",
"genre": "research_article",
"id": "sg:pub.10.1186/1471-2164-15-284",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2435910",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2440993",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1023790",
"issn": [
"1471-2164"
],
"name": "BMC Genomics",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "15"
}
],
"name": "ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases",
"pagination": "284",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1dd3532481890c2190986211686ba627404e8eaa09349cb7981213191c6c6046"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"24735413"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"100965258"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1471-2164-15-284"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006261518"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1471-2164-15-284",
"https://app.dimensions.ai/details/publication/pub.1006261518"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000503.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1186%2F1471-2164-15-284"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-284'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-284'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-284'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-284'
This table displays all metadata directly associated to this object as RDF triples.
389 TRIPLES
21 PREDICATES
114 URIs
38 LITERALS
26 BLANK NODES