High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03-27

AUTHORS

Louise Brousseau, Alexandra Tinaut, Caroline Duret, Tiange Lang, Pauline Garnier-Gere, Ivan Scotti

ABSTRACT

BACKGROUND: The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. RESULTS: In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs. CONCLUSION: The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species. More... »

PAGES

238

References to SciGraph publications

  • 2011-02-23. The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: a case study along a combination of hydromorphic and canopy disturbance gradients in ANNALS OF FOREST SCIENCE
  • 2008-06-30. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome in BMC GENOMICS
  • 2003-05-24. Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine-rich protein in PLANTA
  • 2008-01-31. Parallel tagged sequencing on the 454 platform in NATURE PROTOCOLS
  • 2005-04-03. A gene expression map of Arabidopsis thaliana development in NATURE GENETICS
  • 2011-06-02. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence in BMC GENOMICS
  • 2010-03-16. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery in BMC GENOMICS
  • 2011-02-10. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae) in BMC GENOMICS
  • 2006-10-26. 454 sequencing put to the test using the complex genome of barley in BMC GENOMICS
  • 2010-12-26. The genome of Theobroma cacao in NATURE GENETICS
  • 2010-01. Adaptive potential in forest tree populations: what is it, and how can we measure it? in ANNALS OF FOREST SCIENCE
  • 2010-10-16. Comparing de novo assemblers for 454 transcriptome data in BMC GENOMICS
  • 2001-10-01. Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs in HEREDITY
  • 2013-06-07. RaBoT: a rarefaction-by-bootstrap method to compare genome-wide levels of genetic diversity in ANNALS OF FOREST SCIENCE
  • 2010-01-24. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils in NATURE GENETICS
  • 2014-01-22. Pathogens and insect herbivores drive rainforest plant diversity and composition in NATURE
  • 2007-07-20. Accuracy and quality of massively parallel DNA pyrosequencing in GENOME BIOLOGY
  • 2013-05-22. The Norway spruce genome sequence and conifer genome evolution in NATURE
  • 2011-01-25. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence in BMC GENOMICS
  • 2010-09-17. Genomics and the future of conservation genetics in NATURE REVIEWS GENETICS
  • 2011-04-10. A framework for variation discovery and genotyping using next-generation DNA sequencing data in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-15-238

    DOI

    http://dx.doi.org/10.1186/1471-2164-15-238

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050517044

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24673733


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Pair Mismatch", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clusiaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Contig Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fabaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meliaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myristicaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trees", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "INRA, UMR 1137 EEF, all\u00e9e de l\u2019Arboretum, 54280 Champenoux, French Guiana", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France", 
                "INRA, UMR 1137 EEF, all\u00e9e de l\u2019Arboretum, 54280 Champenoux, French Guiana"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brousseau", 
            "givenName": "Louise", 
            "id": "sg:person.01274270751.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274270751.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of French West Indies and French Guiana, UMR EcoFoG, Campus agronomique BP 709, F-97387 KOUROU, Cedex Kragujevac, French Guiana", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "University of French West Indies and French Guiana, UMR EcoFoG, Campus agronomique BP 709, F-97387 KOUROU, Cedex Kragujevac, French Guiana"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tinaut", 
            "givenName": "Alexandra", 
            "id": "sg:person.01157262740.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157262740.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duret", 
            "givenName": "Caroline", 
            "id": "sg:person.01225376140.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225376140.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China", 
              "id": "http://www.grid.ac/institutes/grid.458477.d", 
              "name": [
                "Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lang", 
            "givenName": "Tiange", 
            "id": "sg:person.01061477175.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061477175.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, UMR 1202, University of Bordeaux, F-33400 Talence, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "INRA, UMR 1202 BIOGECO, F-33610 Cestas, France", 
                "BIOGECO, UMR 1202, University of Bordeaux, F-33400 Talence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garnier-Gere", 
            "givenName": "Pauline", 
            "id": "sg:person.0640630325.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640630325.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scotti", 
            "givenName": "Ivan", 
            "id": "sg:person.01032345662.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032345662.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng1543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005385099", 
              "https://doi.org/10.1038/ng1543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-7-275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020268444", 
              "https://doi.org/10.1186/1471-2164-7-275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050300602", 
              "https://doi.org/10.1186/1471-2164-11-571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005182849", 
              "https://doi.org/10.1038/ng.515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037510125", 
              "https://doi.org/10.1186/gb-2007-8-7-r143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026071416", 
              "https://doi.org/10.1186/1471-2164-12-59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026026838", 
              "https://doi.org/10.1038/ng.736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012965453", 
              "https://doi.org/10.1038/nprot.2007.520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1046/j.1365-2540.2001.00942.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012575233", 
              "https://doi.org/10.1046/j.1365-2540.2001.00942.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13595-011-0024-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022593963", 
              "https://doi.org/10.1007/s13595-011-0024-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031611439", 
              "https://doi.org/10.1186/1471-2164-11-180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13595-013-0302-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050265193", 
              "https://doi.org/10.1007/s13595-013-0302-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010043397", 
              "https://doi.org/10.1186/1471-2164-9-312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052388928", 
              "https://doi.org/10.1038/nature12211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-003-1051-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007598849", 
              "https://doi.org/10.1007/s00425-003-1051-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/forest/2010053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056968277", 
              "https://doi.org/10.1051/forest/2010053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002281732", 
              "https://doi.org/10.1186/1471-2164-12-285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010244476", 
              "https://doi.org/10.1038/ng.806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001581608", 
              "https://doi.org/10.1186/1471-2164-12-104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019136997", 
              "https://doi.org/10.1038/nature12911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005842757", 
              "https://doi.org/10.1038/nrg2844"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-03-27", 
        "datePublishedReg": "2014-03-27", 
        "description": "BACKGROUND: The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources.\nRESULTS: In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs.\nCONCLUSION: The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-15-238", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "tropical tree species", 
          "gene function", 
          "tree species", 
          "genomic resources", 
          "gene expression", 
          "high-throughput transcriptome sequencing", 
          "tree genetic diversity", 
          "number of unigenes", 
          "neotropical tree species", 
          "de novo assembly", 
          "gene functional annotations", 
          "ongoing environmental change", 
          "differential gene expression", 
          "preliminary functional analysis", 
          "secondary metabolism", 
          "functional annotation", 
          "genetic diversity", 
          "transcriptome sequencing", 
          "novo assembly", 
          "tropical trees", 
          "bioinformatics procedures", 
          "cDNA library", 
          "important species", 
          "marker discovery", 
          "ecological features", 
          "functional analysis", 
          "Amazonian rainforest", 
          "botanical families", 
          "false variants", 
          "functional studies", 
          "putative variants", 
          "species", 
          "environmental changes", 
          "transcriptome", 
          "contigs", 
          "transcripts", 
          "relative representation", 
          "expression", 
          "unigenes", 
          "metabolism", 
          "chromosomes", 
          "rainforest", 
          "organs", 
          "variants", 
          "pyrosequencing", 
          "higher number", 
          "sequencing", 
          "differential representation", 
          "diversity", 
          "BP", 
          "annotation", 
          "function", 
          "aromatic compounds", 
          "substantial amount", 
          "such changes", 
          "assembly", 
          "trees", 
          "roots", 
          "family", 
          "discovery", 
          "first step", 
          "identification", 
          "library", 
          "tissue", 
          "mismatch identification", 
          "number", 
          "changes", 
          "patterns", 
          "resources", 
          "study", 
          "compounds", 
          "step", 
          "analysis", 
          "amount", 
          "density", 
          "mismatch", 
          "features", 
          "impact", 
          "quality values", 
          "likelihood", 
          "depth", 
          "way", 
          "need", 
          "values", 
          "procedure", 
          "representation", 
          "widespread botanical families", 
          "bioperl-based bioinformatic procedure", 
          "account single-base quality values", 
          "single-base quality values", 
          "contig depth", 
          "overrepresented gene function", 
          "overall mismatch density", 
          "mismatch density", 
          "mismatches/100 bp", 
          "variation-containing contigs"
        ], 
        "name": "High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species", 
        "pagination": "238", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050517044"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-15-238"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24673733"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-15-238", 
          "https://app.dimensions.ai/details/publication/pub.1050517044"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_638.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-15-238"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-238'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-238'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-238'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-15-238'


     

    This table displays all metadata directly associated to this object as RDF triples.

    339 TRIPLES      22 PREDICATES      156 URIs      127 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-15-238 schema:about N071aeb7ac3cb4998be0b1664cf431dd0
    2 N20e89bd41d854f03846925bfc832e80a
    3 N5fc9d6fcbff94c9883c7883215917529
    4 N7dca8d67466043bda77aa15365484b88
    5 N836815e1bc3c450ea6bad3ef22cdf89d
    6 N8f4c4b6dc6ef42f6bf97641081f99f0e
    7 Naf5d67b262a94a6f98cacbef1747e9eb
    8 Nb20ecb7e7aeb4674bec5392635c22f6c
    9 Nc007752a423640baa29efe50d69b58cf
    10 Nc9c6b6b062c74d048625b2037b5589e7
    11 Nd4d06692817243dea20e8dc83da82ae1
    12 Nd998eca2f21c416e8a6d96557c07da17
    13 Ne65d25cf382b47c5a964dbe634e45007
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author N658d4189868e4ba59e22e2132d6dc1fb
    17 schema:citation sg:pub.10.1007/s00425-003-1051-2
    18 sg:pub.10.1007/s13595-011-0024-z
    19 sg:pub.10.1007/s13595-013-0302-z
    20 sg:pub.10.1038/nature12211
    21 sg:pub.10.1038/nature12911
    22 sg:pub.10.1038/ng.515
    23 sg:pub.10.1038/ng.736
    24 sg:pub.10.1038/ng.806
    25 sg:pub.10.1038/ng1543
    26 sg:pub.10.1038/nprot.2007.520
    27 sg:pub.10.1038/nrg2844
    28 sg:pub.10.1046/j.1365-2540.2001.00942.x
    29 sg:pub.10.1051/forest/2010053
    30 sg:pub.10.1186/1471-2164-11-180
    31 sg:pub.10.1186/1471-2164-11-571
    32 sg:pub.10.1186/1471-2164-12-104
    33 sg:pub.10.1186/1471-2164-12-285
    34 sg:pub.10.1186/1471-2164-12-59
    35 sg:pub.10.1186/1471-2164-7-275
    36 sg:pub.10.1186/1471-2164-9-312
    37 sg:pub.10.1186/gb-2007-8-7-r143
    38 schema:datePublished 2014-03-27
    39 schema:datePublishedReg 2014-03-27
    40 schema:description BACKGROUND: The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. RESULTS: In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs. CONCLUSION: The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N08cd704502a74214a8d0b6215fe5a750
    45 Na5c87283a6c04cafb631721e1bf5603a
    46 sg:journal.1023790
    47 schema:keywords Amazonian rainforest
    48 BP
    49 account single-base quality values
    50 amount
    51 analysis
    52 annotation
    53 aromatic compounds
    54 assembly
    55 bioinformatics procedures
    56 bioperl-based bioinformatic procedure
    57 botanical families
    58 cDNA library
    59 changes
    60 chromosomes
    61 compounds
    62 contig depth
    63 contigs
    64 de novo assembly
    65 density
    66 depth
    67 differential gene expression
    68 differential representation
    69 discovery
    70 diversity
    71 ecological features
    72 environmental changes
    73 expression
    74 false variants
    75 family
    76 features
    77 first step
    78 function
    79 functional analysis
    80 functional annotation
    81 functional studies
    82 gene expression
    83 gene function
    84 gene functional annotations
    85 genetic diversity
    86 genomic resources
    87 high-throughput transcriptome sequencing
    88 higher number
    89 identification
    90 impact
    91 important species
    92 library
    93 likelihood
    94 marker discovery
    95 metabolism
    96 mismatch
    97 mismatch density
    98 mismatch identification
    99 mismatches/100 bp
    100 need
    101 neotropical tree species
    102 novo assembly
    103 number
    104 number of unigenes
    105 ongoing environmental change
    106 organs
    107 overall mismatch density
    108 overrepresented gene function
    109 patterns
    110 preliminary functional analysis
    111 procedure
    112 putative variants
    113 pyrosequencing
    114 quality values
    115 rainforest
    116 relative representation
    117 representation
    118 resources
    119 roots
    120 secondary metabolism
    121 sequencing
    122 single-base quality values
    123 species
    124 step
    125 study
    126 substantial amount
    127 such changes
    128 tissue
    129 transcriptome
    130 transcriptome sequencing
    131 transcripts
    132 tree genetic diversity
    133 tree species
    134 trees
    135 tropical tree species
    136 tropical trees
    137 unigenes
    138 values
    139 variants
    140 variation-containing contigs
    141 way
    142 widespread botanical families
    143 schema:name High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species
    144 schema:pagination 238
    145 schema:productId N0247fc6cbe924803b5b0de8bb47bde67
    146 N02fac7c173424e2188ad96741dd0de82
    147 Neb3025aebb31411d910d078da2e36e0a
    148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050517044
    149 https://doi.org/10.1186/1471-2164-15-238
    150 schema:sdDatePublished 2022-01-01T18:33
    151 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    152 schema:sdPublisher N9359c8317019481d9e1f792b0f542db7
    153 schema:url https://doi.org/10.1186/1471-2164-15-238
    154 sgo:license sg:explorer/license/
    155 sgo:sdDataset articles
    156 rdf:type schema:ScholarlyArticle
    157 N0247fc6cbe924803b5b0de8bb47bde67 schema:name dimensions_id
    158 schema:value pub.1050517044
    159 rdf:type schema:PropertyValue
    160 N02fac7c173424e2188ad96741dd0de82 schema:name doi
    161 schema:value 10.1186/1471-2164-15-238
    162 rdf:type schema:PropertyValue
    163 N071aeb7ac3cb4998be0b1664cf431dd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Myristicaceae
    165 rdf:type schema:DefinedTerm
    166 N08cd704502a74214a8d0b6215fe5a750 schema:issueNumber 1
    167 rdf:type schema:PublicationIssue
    168 N20e89bd41d854f03846925bfc832e80a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Base Pair Mismatch
    170 rdf:type schema:DefinedTerm
    171 N2dfd5014eea84312920c6630b396fa3e rdf:first sg:person.0640630325.11
    172 rdf:rest Na1804ba84bd74f318c434123a5345d4d
    173 N5fc9d6fcbff94c9883c7883215917529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Contig Mapping
    175 rdf:type schema:DefinedTerm
    176 N658d4189868e4ba59e22e2132d6dc1fb rdf:first sg:person.01274270751.51
    177 rdf:rest Nb47886242f92421ebd7626795c5a8a5f
    178 N7dca8d67466043bda77aa15365484b88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Genetic Variation
    180 rdf:type schema:DefinedTerm
    181 N836815e1bc3c450ea6bad3ef22cdf89d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Polymorphism, Single Nucleotide
    183 rdf:type schema:DefinedTerm
    184 N8f4c4b6dc6ef42f6bf97641081f99f0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name High-Throughput Nucleotide Sequencing
    186 rdf:type schema:DefinedTerm
    187 N9359c8317019481d9e1f792b0f542db7 schema:name Springer Nature - SN SciGraph project
    188 rdf:type schema:Organization
    189 Na1804ba84bd74f318c434123a5345d4d rdf:first sg:person.01032345662.28
    190 rdf:rest rdf:nil
    191 Na5c87283a6c04cafb631721e1bf5603a schema:volumeNumber 15
    192 rdf:type schema:PublicationVolume
    193 Naf5d67b262a94a6f98cacbef1747e9eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Transcriptome
    195 rdf:type schema:DefinedTerm
    196 Nb20ecb7e7aeb4674bec5392635c22f6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Meliaceae
    198 rdf:type schema:DefinedTerm
    199 Nb47886242f92421ebd7626795c5a8a5f rdf:first sg:person.01157262740.19
    200 rdf:rest Nb7e757a6b6304fc8b99f801c73d66c78
    201 Nb7e757a6b6304fc8b99f801c73d66c78 rdf:first sg:person.01225376140.41
    202 rdf:rest Nef042ab77ebd4b66970ac51b5eeb16f3
    203 Nc007752a423640baa29efe50d69b58cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Genes, Plant
    205 rdf:type schema:DefinedTerm
    206 Nc9c6b6b062c74d048625b2037b5589e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Trees
    208 rdf:type schema:DefinedTerm
    209 Nd4d06692817243dea20e8dc83da82ae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Fabaceae
    211 rdf:type schema:DefinedTerm
    212 Nd998eca2f21c416e8a6d96557c07da17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Sequence Analysis, DNA
    214 rdf:type schema:DefinedTerm
    215 Ne65d25cf382b47c5a964dbe634e45007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Clusiaceae
    217 rdf:type schema:DefinedTerm
    218 Neb3025aebb31411d910d078da2e36e0a schema:name pubmed_id
    219 schema:value 24673733
    220 rdf:type schema:PropertyValue
    221 Nef042ab77ebd4b66970ac51b5eeb16f3 rdf:first sg:person.01061477175.15
    222 rdf:rest N2dfd5014eea84312920c6630b396fa3e
    223 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Biological Sciences
    225 rdf:type schema:DefinedTerm
    226 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    227 schema:name Genetics
    228 rdf:type schema:DefinedTerm
    229 sg:journal.1023790 schema:issn 1471-2164
    230 schema:name BMC Genomics
    231 schema:publisher Springer Nature
    232 rdf:type schema:Periodical
    233 sg:person.01032345662.28 schema:affiliation grid-institutes:None
    234 schema:familyName Scotti
    235 schema:givenName Ivan
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032345662.28
    237 rdf:type schema:Person
    238 sg:person.01061477175.15 schema:affiliation grid-institutes:grid.458477.d
    239 schema:familyName Lang
    240 schema:givenName Tiange
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061477175.15
    242 rdf:type schema:Person
    243 sg:person.01157262740.19 schema:affiliation grid-institutes:None
    244 schema:familyName Tinaut
    245 schema:givenName Alexandra
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157262740.19
    247 rdf:type schema:Person
    248 sg:person.01225376140.41 schema:affiliation grid-institutes:None
    249 schema:familyName Duret
    250 schema:givenName Caroline
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225376140.41
    252 rdf:type schema:Person
    253 sg:person.01274270751.51 schema:affiliation grid-institutes:None
    254 schema:familyName Brousseau
    255 schema:givenName Louise
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274270751.51
    257 rdf:type schema:Person
    258 sg:person.0640630325.11 schema:affiliation grid-institutes:grid.508391.6
    259 schema:familyName Garnier-Gere
    260 schema:givenName Pauline
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640630325.11
    262 rdf:type schema:Person
    263 sg:pub.10.1007/s00425-003-1051-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007598849
    264 https://doi.org/10.1007/s00425-003-1051-2
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s13595-011-0024-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022593963
    267 https://doi.org/10.1007/s13595-011-0024-z
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s13595-013-0302-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050265193
    270 https://doi.org/10.1007/s13595-013-0302-z
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nature12211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052388928
    273 https://doi.org/10.1038/nature12211
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nature12911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019136997
    276 https://doi.org/10.1038/nature12911
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/ng.515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005182849
    279 https://doi.org/10.1038/ng.515
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/ng.736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026026838
    282 https://doi.org/10.1038/ng.736
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
    285 https://doi.org/10.1038/ng.806
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ng1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005385099
    288 https://doi.org/10.1038/ng1543
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nprot.2007.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012965453
    291 https://doi.org/10.1038/nprot.2007.520
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nrg2844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005842757
    294 https://doi.org/10.1038/nrg2844
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1046/j.1365-2540.2001.00942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012575233
    297 https://doi.org/10.1046/j.1365-2540.2001.00942.x
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1051/forest/2010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056968277
    300 https://doi.org/10.1051/forest/2010053
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1186/1471-2164-11-180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031611439
    303 https://doi.org/10.1186/1471-2164-11-180
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1186/1471-2164-11-571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050300602
    306 https://doi.org/10.1186/1471-2164-11-571
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1186/1471-2164-12-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001581608
    309 https://doi.org/10.1186/1471-2164-12-104
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/1471-2164-12-285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002281732
    312 https://doi.org/10.1186/1471-2164-12-285
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/1471-2164-12-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026071416
    315 https://doi.org/10.1186/1471-2164-12-59
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/1471-2164-7-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020268444
    318 https://doi.org/10.1186/1471-2164-7-275
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/1471-2164-9-312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010043397
    321 https://doi.org/10.1186/1471-2164-9-312
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
    324 https://doi.org/10.1186/gb-2007-8-7-r143
    325 rdf:type schema:CreativeWork
    326 grid-institutes:None schema:alternateName INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France
    327 INRA, UMR 1137 EEF, allée de l’Arboretum, 54280 Champenoux, French Guiana
    328 University of French West Indies and French Guiana, UMR EcoFoG, Campus agronomique BP 709, F-97387 KOUROU, Cedex Kragujevac, French Guiana
    329 schema:name INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex Kragujevac, France
    330 INRA, UMR 1137 EEF, allée de l’Arboretum, 54280 Champenoux, French Guiana
    331 University of French West Indies and French Guiana, UMR EcoFoG, Campus agronomique BP 709, F-97387 KOUROU, Cedex Kragujevac, French Guiana
    332 rdf:type schema:Organization
    333 grid-institutes:grid.458477.d schema:alternateName Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China
    334 schema:name Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China
    335 rdf:type schema:Organization
    336 grid-institutes:grid.508391.6 schema:alternateName BIOGECO, UMR 1202, University of Bordeaux, F-33400 Talence, France
    337 schema:name BIOGECO, UMR 1202, University of Bordeaux, F-33400 Talence, France
    338 INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
    339 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...