Identifying Mendelian disease genes with the Variant Effect Scoring Tool View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05

AUTHORS

Hannah Carter, Christopher Douville, Peter D Stenson, David N Cooper, Rachel Karchin

ABSTRACT

BACKGROUND: Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. RESULTS: We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. CONCLUSIONS: Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is available as a stand-alone software package at http://wiki.chasmsoftware.org and is hosted by the CRAVAT web server at http://www.cravat.us. More... »

PAGES

s3

References to SciGraph publications

  • 2010-01. Exome sequencing identifies the cause of a mendelian disorder in NATURE GENETICS
  • 2010-08. MutationTaster evaluates disease-causing potential of sequence alterations in NATURE METHODS
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2006-05. Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome in NATURE GENETICS
  • 2010-06. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome in NATURE GENETICS
  • 2011-03-29. Next-generation association studies for complex traits in NATURE GENETICS
  • 2007-10. The NCBI dbGaP database of genotypes and phenotypes in NATURE GENETICS
  • 2009-09-10. Targeted capture and massively parallel sequencing of 12 human exomes in NATURE
  • 2010-10-28. A map of human genome variation from population-scale sequencing in NATURE
  • 2009-07. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm in NATURE PROTOCOLS
  • 2011-09. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data in NATURE REVIEWS GENETICS
  • 2010-12. Overcoming bias and systematic errors in next generation sequencing data in GENOME MEDICINE
  • 2009-01. The Human Gene Mutation Database: 2008 update in GENOME MEDICINE
  • 2011-05. A framework for variation discovery and genotyping using next-generation DNA sequencing data in NATURE GENETICS
  • 2012-12. An integrative variant analysis suite for whole exome next-generation sequencing data in BMC BIOINFORMATICS
  • 2010-01. Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia in GENOME MEDICINE
  • 2010-04. A method and server for predicting damaging missense mutations in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-14-s3-s3

    DOI

    http://dx.doi.org/10.1186/1471-2164-14-s3-s3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023508853

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23819870


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Area Under Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Diseases, Inborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation, Missense", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "ROC Curve", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carter", 
            "givenName": "Hannah", 
            "id": "sg:person.01077062066.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077062066.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Douville", 
            "givenName": "Christopher", 
            "id": "sg:person.01030746666.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030746666.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cardiff University", 
              "id": "https://www.grid.ac/institutes/grid.5600.3", 
              "name": [
                "Institute of Medical Genetics, School of Medicine, Cardiff University, Hearth Park, CF14 4XN, Cardiff, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stenson", 
            "givenName": "Peter D", 
            "id": "sg:person.01174747522.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174747522.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cardiff University", 
              "id": "https://www.grid.ac/institutes/grid.5600.3", 
              "name": [
                "Institute of Medical Genetics, School of Medicine, Cardiff University, Hearth Park, CF14 4XN, Cardiff, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cooper", 
            "givenName": "David N", 
            "id": "sg:person.011666241032.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011666241032.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karchin", 
            "givenName": "Rachel", 
            "id": "sg:person.0651153564.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651153564.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-13-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005761682", 
              "https://doi.org/10.1186/1471-2105-13-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005761682", 
              "https://doi.org/10.1186/1471-2105-13-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007075476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0410-248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007489634", 
              "https://doi.org/10.1038/nmeth0410-248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0410-248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007489634", 
              "https://doi.org/10.1038/nmeth0410-248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009506595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009603644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010244476", 
              "https://doi.org/10.1038/ng.806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013265578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014947319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014947319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014981379", 
              "https://doi.org/10.1186/gm13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2009.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015642657", 
              "https://doi.org/10.1038/nprot.2009.86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017810816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017810816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018091417", 
              "https://doi.org/10.1186/gm122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021123766", 
              "https://doi.org/10.1038/ng.499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021369761", 
              "https://doi.org/10.1038/ng.581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0411-287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022230193", 
              "https://doi.org/10.1038/ng0411-287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.229102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022792016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.05.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024021109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-09-1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024091199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.12.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025130025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025751715", 
              "https://doi.org/10.1038/ng1775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025751715", 
              "https://doi.org/10.1038/ng1775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0810-575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028459136", 
              "https://doi.org/10.1038/nmeth0810-575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2011.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029141628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1997.4995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029283905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.772403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030905286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.107524.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032096953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/513473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033075889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genom.7.080505.115630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033519727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1007-1181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033997263", 
              "https://doi.org/10.1038/ng1007-1181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034641828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3804205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036448879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.115998.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037348084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038593056", 
              "https://doi.org/10.1038/nature08250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038593056", 
              "https://doi.org/10.1038/nature08250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.112326.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039404689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041879321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041978012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043016602", 
              "https://doi.org/10.1186/gm208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043981194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044439384", 
              "https://doi.org/10.1038/nrg3046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.106161.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045023304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1997.9.7.1545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045836958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1143844.1143874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046546824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0038470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050483412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.298224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218469"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-05", 
        "datePublishedReg": "2013-05-01", 
        "description": "BACKGROUND: Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease.\nRESULTS: We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome.\nCONCLUSIONS: Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is available as a stand-alone software package at http://wiki.chasmsoftware.org and is hosted by the CRAVAT web server at http://www.cravat.us.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2164-14-s3-s3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2605564", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3095702", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Identifying Mendelian disease genes with the Variant Effect Scoring Tool", 
        "pagination": "s3", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7000df7d44ed0924c643d558469611601ac5e8117cf314d2aab2aec54e431b51"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23819870"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-14-s3-s3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023508853"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-14-s3-s3", 
          "https://app.dimensions.ai/details/publication/pub.1023508853"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2164-14-S3-S3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-s3-s3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-s3-s3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-s3-s3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-s3-s3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      21 PREDICATES      86 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-14-s3-s3 schema:about N10e74e11b77147cbb394956aabfbe20b
    2 N2af35122655a47d8aab981a5c4104e96
    3 N2c133a4f526b4a5dbd37c239c9210080
    4 N5c04b338ea06481cbc9a274f546a3526
    5 N608755685a1448998ac9d111883ac40d
    6 N8642647022d842a7bea9157fe212a7ba
    7 N9dca1c2017734222a6c20deaff3d1d8c
    8 Nd6b2fa3ab6f44581aa048ce77d77da3b
    9 Ndaa6741db3244142991baa7dddbab511
    10 Ne886063208654a85b2bb6fbce9c6bcfc
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N8d5d11de5f054f9eabb13c25636326a5
    14 schema:citation sg:pub.10.1023/a:1010933404324
    15 sg:pub.10.1038/nature08250
    16 sg:pub.10.1038/nature09534
    17 sg:pub.10.1038/ng.499
    18 sg:pub.10.1038/ng.581
    19 sg:pub.10.1038/ng.806
    20 sg:pub.10.1038/ng0411-287
    21 sg:pub.10.1038/ng1007-1181
    22 sg:pub.10.1038/ng1775
    23 sg:pub.10.1038/nmeth0410-248
    24 sg:pub.10.1038/nmeth0810-575
    25 sg:pub.10.1038/nprot.2009.86
    26 sg:pub.10.1038/nrg3046
    27 sg:pub.10.1186/1471-2105-13-8
    28 sg:pub.10.1186/gm122
    29 sg:pub.10.1186/gm13
    30 sg:pub.10.1186/gm208
    31 https://doi.org/10.1002/humu.20671
    32 https://doi.org/10.1002/humu.20938
    33 https://doi.org/10.1006/geno.1997.4995
    34 https://doi.org/10.1016/j.ajhg.2010.05.021
    35 https://doi.org/10.1016/j.jmb.2005.12.025
    36 https://doi.org/10.1016/j.ygeno.2011.06.010
    37 https://doi.org/10.1086/513473
    38 https://doi.org/10.1093/bioinformatics/btp324
    39 https://doi.org/10.1093/bioinformatics/btp352
    40 https://doi.org/10.1093/bioinformatics/btp528
    41 https://doi.org/10.1093/bioinformatics/btr174
    42 https://doi.org/10.1093/bioinformatics/btr357
    43 https://doi.org/10.1093/nar/gkm238
    44 https://doi.org/10.1093/nar/gkq963
    45 https://doi.org/10.1093/nar/gkr407
    46 https://doi.org/10.1101/gr.106161.110
    47 https://doi.org/10.1101/gr.107524.110
    48 https://doi.org/10.1101/gr.112326.110
    49 https://doi.org/10.1101/gr.115998.110
    50 https://doi.org/10.1101/gr.229102
    51 https://doi.org/10.1101/gr.3804205
    52 https://doi.org/10.1101/gr.772403
    53 https://doi.org/10.1109/72.298224
    54 https://doi.org/10.1126/science.1181498
    55 https://doi.org/10.1145/1143844.1143874
    56 https://doi.org/10.1146/annurev.genom.7.080505.115630
    57 https://doi.org/10.1158/0008-5472.can-09-1133
    58 https://doi.org/10.1162/neco.1997.9.7.1545
    59 https://doi.org/10.1371/journal.pgen.1001156
    60 https://doi.org/10.1371/journal.pone.0038470
    61 schema:datePublished 2013-05
    62 schema:datePublishedReg 2013-05-01
    63 schema:description BACKGROUND: Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. RESULTS: We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. CONCLUSIONS: Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is available as a stand-alone software package at http://wiki.chasmsoftware.org and is hosted by the CRAVAT web server at http://www.cravat.us.
    64 schema:genre research_article
    65 schema:inLanguage en
    66 schema:isAccessibleForFree true
    67 schema:isPartOf N5f16ea53a5e6476892a43832ec616a6e
    68 Na41130bb4613467ba069883c7dc563e3
    69 sg:journal.1023790
    70 schema:name Identifying Mendelian disease genes with the Variant Effect Scoring Tool
    71 schema:pagination s3
    72 schema:productId N2d0bac845c5e4d30bb95f1e506235672
    73 N3e4ade48f6ec4a66b9da16a0bddad722
    74 N620ca49405574df3896a83abddbff3e3
    75 N74cd44bc034c4257be51373ff8b20271
    76 N9fb69947e5e3436a8997c7fb838bd38d
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023508853
    78 https://doi.org/10.1186/1471-2164-14-s3-s3
    79 schema:sdDatePublished 2019-04-11T01:05
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher Nd21953342a50411c9aafa408d46519d4
    82 schema:url http://link.springer.com/10.1186%2F1471-2164-14-S3-S3
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N0234eb56429b4cdfa510703648092497 rdf:first sg:person.01030746666.29
    87 rdf:rest N56b7474f42a04b9f8f98a7778517fc20
    88 N10e74e11b77147cbb394956aabfbe20b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Databases, Genetic
    90 rdf:type schema:DefinedTerm
    91 N2af35122655a47d8aab981a5c4104e96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Mutation, Missense
    93 rdf:type schema:DefinedTerm
    94 N2b84bb806dc14fcd888e82c26f77f503 rdf:first sg:person.0651153564.24
    95 rdf:rest rdf:nil
    96 N2c133a4f526b4a5dbd37c239c9210080 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Area Under Curve
    98 rdf:type schema:DefinedTerm
    99 N2d0bac845c5e4d30bb95f1e506235672 schema:name doi
    100 schema:value 10.1186/1471-2164-14-s3-s3
    101 rdf:type schema:PropertyValue
    102 N3e4ade48f6ec4a66b9da16a0bddad722 schema:name pubmed_id
    103 schema:value 23819870
    104 rdf:type schema:PropertyValue
    105 N56b7474f42a04b9f8f98a7778517fc20 rdf:first sg:person.01174747522.13
    106 rdf:rest N9e5687abb6a84a36a0bd5ad6a491e628
    107 N5c04b338ea06481cbc9a274f546a3526 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name ROC Curve
    109 rdf:type schema:DefinedTerm
    110 N5f16ea53a5e6476892a43832ec616a6e schema:issueNumber Suppl 3
    111 rdf:type schema:PublicationIssue
    112 N608755685a1448998ac9d111883ac40d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Computational Biology
    114 rdf:type schema:DefinedTerm
    115 N620ca49405574df3896a83abddbff3e3 schema:name nlm_unique_id
    116 schema:value 100965258
    117 rdf:type schema:PropertyValue
    118 N74cd44bc034c4257be51373ff8b20271 schema:name dimensions_id
    119 schema:value pub.1023508853
    120 rdf:type schema:PropertyValue
    121 N8642647022d842a7bea9157fe212a7ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Humans
    123 rdf:type schema:DefinedTerm
    124 N8d5d11de5f054f9eabb13c25636326a5 rdf:first sg:person.01077062066.85
    125 rdf:rest N0234eb56429b4cdfa510703648092497
    126 N9dca1c2017734222a6c20deaff3d1d8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Genetic Diseases, Inborn
    128 rdf:type schema:DefinedTerm
    129 N9e5687abb6a84a36a0bd5ad6a491e628 rdf:first sg:person.011666241032.18
    130 rdf:rest N2b84bb806dc14fcd888e82c26f77f503
    131 N9fb69947e5e3436a8997c7fb838bd38d schema:name readcube_id
    132 schema:value 7000df7d44ed0924c643d558469611601ac5e8117cf314d2aab2aec54e431b51
    133 rdf:type schema:PropertyValue
    134 Na41130bb4613467ba069883c7dc563e3 schema:volumeNumber 14
    135 rdf:type schema:PublicationVolume
    136 Nd21953342a50411c9aafa408d46519d4 schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 Nd6b2fa3ab6f44581aa048ce77d77da3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Exome
    140 rdf:type schema:DefinedTerm
    141 Ndaa6741db3244142991baa7dddbab511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Algorithms
    143 rdf:type schema:DefinedTerm
    144 Ne886063208654a85b2bb6fbce9c6bcfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Artificial Intelligence
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Biological Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Genetics
    152 rdf:type schema:DefinedTerm
    153 sg:grant.2605564 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-14-s3-s3
    154 rdf:type schema:MonetaryGrant
    155 sg:grant.3095702 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-14-s3-s3
    156 rdf:type schema:MonetaryGrant
    157 sg:journal.1023790 schema:issn 1471-2164
    158 schema:name BMC Genomics
    159 rdf:type schema:Periodical
    160 sg:person.01030746666.29 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    161 schema:familyName Douville
    162 schema:givenName Christopher
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030746666.29
    164 rdf:type schema:Person
    165 sg:person.01077062066.85 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    166 schema:familyName Carter
    167 schema:givenName Hannah
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077062066.85
    169 rdf:type schema:Person
    170 sg:person.011666241032.18 schema:affiliation https://www.grid.ac/institutes/grid.5600.3
    171 schema:familyName Cooper
    172 schema:givenName David N
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011666241032.18
    174 rdf:type schema:Person
    175 sg:person.01174747522.13 schema:affiliation https://www.grid.ac/institutes/grid.5600.3
    176 schema:familyName Stenson
    177 schema:givenName Peter D
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174747522.13
    179 rdf:type schema:Person
    180 sg:person.0651153564.24 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    181 schema:familyName Karchin
    182 schema:givenName Rachel
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651153564.24
    184 rdf:type schema:Person
    185 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    186 https://doi.org/10.1023/a:1010933404324
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature08250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038593056
    189 https://doi.org/10.1038/nature08250
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    192 https://doi.org/10.1038/nature09534
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/ng.499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021123766
    195 https://doi.org/10.1038/ng.499
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ng.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021369761
    198 https://doi.org/10.1038/ng.581
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
    201 https://doi.org/10.1038/ng.806
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/ng0411-287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230193
    204 https://doi.org/10.1038/ng0411-287
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/ng1007-1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033997263
    207 https://doi.org/10.1038/ng1007-1181
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751715
    210 https://doi.org/10.1038/ng1775
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nmeth0410-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489634
    213 https://doi.org/10.1038/nmeth0410-248
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nmeth0810-575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028459136
    216 https://doi.org/10.1038/nmeth0810-575
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nprot.2009.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642657
    219 https://doi.org/10.1038/nprot.2009.86
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nrg3046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044439384
    222 https://doi.org/10.1038/nrg3046
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/1471-2105-13-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005761682
    225 https://doi.org/10.1186/1471-2105-13-8
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/gm122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018091417
    228 https://doi.org/10.1186/gm122
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/gm13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014981379
    231 https://doi.org/10.1186/gm13
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/gm208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043016602
    234 https://doi.org/10.1186/gm208
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1002/humu.20671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034641828
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1002/humu.20938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017810816
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1006/geno.1997.4995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029283905
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.ajhg.2010.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024021109
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.jmb.2005.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025130025
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.ygeno.2011.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029141628
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1086/513473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033075889
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/btp528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041879321
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/bioinformatics/btr174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041978012
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/bioinformatics/btr357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009506595
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gkm238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043981194
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkq963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007075476
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/nar/gkr407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009603644
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1101/gr.106161.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045023304
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1101/gr.112326.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039404689
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1101/gr.115998.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037348084
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1101/gr.229102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792016
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1101/gr.3804205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036448879
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1101/gr.772403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030905286
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1109/72.298224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218469
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1126/science.1181498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014947319
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1145/1143844.1143874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046546824
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1146/annurev.genom.7.080505.115630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033519727
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1158/0008-5472.can-09-1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024091199
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1162/neco.1997.9.7.1545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045836958
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1371/journal.pgen.1001156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013265578
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1371/journal.pone.0038470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050483412
    295 rdf:type schema:CreativeWork
    296 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    297 schema:name Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, USA
    298 rdf:type schema:Organization
    299 https://www.grid.ac/institutes/grid.5600.3 schema:alternateName Cardiff University
    300 schema:name Institute of Medical Genetics, School of Medicine, Cardiff University, Hearth Park, CF14 4XN, Cardiff, UK
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...