A data-driven approach to preprocessing Illumina 450K methylation array data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Ruth Pidsley, Chloe C Y Wong, Manuela Volta, Katie Lunnon, Jonathan Mill, Leonard C Schalkwyk

ABSTRACT

BACKGROUND: As the most stable and experimentally accessible epigenetic mark, DNA methylation is of great interest to the research community. The landscape of DNA methylation across tissues, through development and in disease pathogenesis is not yet well characterized. Thus there is a need for rapid and cost effective methods for assessing genome-wide levels of DNA methylation. The Illumina Infinium HumanMethylation450 (450K) BeadChip is a very useful addition to the available methods for DNA methylation analysis but its complex design, incorporating two different assay methods, requires careful consideration. Accordingly, several normalization schemes have been published. We have taken advantage of known DNA methylation patterns associated with genomic imprinting and X-chromosome inactivation (XCI), in addition to the performance of SNP genotyping assays present on the array, to derive three independent metrics which we use to test alternative schemes of correction and normalization. These metrics also have potential utility as quality scores for datasets. RESULTS: The standard index of DNA methylation at any specific CpG site is β = M/(M + U + 100) where M and U are methylated and unmethylated signal intensities, respectively. Betas (βs) calculated from raw signal intensities (the default GenomeStudio behavior) perform well, but using 11 methylomic datasets we demonstrate that quantile normalization methods produce marked improvement, even in highly consistent data, by all three metrics. The commonly used procedure of normalizing betas is inferior to the separate normalization of M and U, and it is also advantageous to normalize Type I and Type II assays separately. More elaborate manipulation of quantiles proves to be counterproductive. CONCLUSIONS: Careful selection of preprocessing steps can minimize variance and thus improve statistical power, especially for the detection of the small absolute DNA methylation changes likely associated with complex disease phenotypes. For the convenience of the research community we have created a user-friendly R software package called wateRmelon, downloadable from bioConductor, compatible with the existing methylumi, minfi and IMA packages, that allows others to utilize the same normalization methods and data quality tests on 450K data. More... »

PAGES

293

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-14-293

DOI

http://dx.doi.org/10.1186/1471-2164-14-293

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048954126

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23631413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Human, X", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomic Imprinting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pidsley", 
        "givenName": "Ruth", 
        "id": "sg:person.0775637006.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775637006.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Y Wong", 
        "givenName": "Chloe C", 
        "id": "sg:person.010101604362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101604362.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volta", 
        "givenName": "Manuela", 
        "id": "sg:person.01242346735.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242346735.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lunnon", 
        "givenName": "Katie", 
        "id": "sg:person.01337470631.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337470631.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK", 
            "University of Exeter Medical School, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mill", 
        "givenName": "Jonathan", 
        "id": "sg:person.0634726306.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634726306.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schalkwyk", 
        "givenName": "Leonard C", 
        "id": "sg:person.01314323235.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314323235.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003467505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/epi.11.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005689442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005869263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/epi.12.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006406279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyr225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014663020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12017-012-8198-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015703526", 
          "https://doi.org/10.1007/s12017-012-8198-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432622", 
          "https://doi.org/10.1007/0-387-29362-0_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025448148", 
          "https://doi.org/10.1186/1471-2105-11-587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2011.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029288477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030610127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034923242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-6-r44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035557760", 
          "https://doi.org/10.1186/gb-2012-13-6-r44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-11-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036923612", 
          "https://doi.org/10.1186/1471-2407-11-66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.2.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-4-84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040448121", 
          "https://doi.org/10.1186/1755-8794-4-84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddr416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041956118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/epi.09.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042294074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-5-210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045434423", 
          "https://doi.org/10.1186/1756-0500-5-210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-5-210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045434423", 
          "https://doi.org/10.1186/1756-0500-5-210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/epi.3.2.5900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072302827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/epi.6.6.16196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072303171"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: As the most stable and experimentally accessible epigenetic mark, DNA methylation is of great interest to the research community. The landscape of DNA methylation across tissues, through development and in disease pathogenesis is not yet well characterized. Thus there is a need for rapid and cost effective methods for assessing genome-wide levels of DNA methylation. The Illumina Infinium HumanMethylation450 (450K) BeadChip is a very useful addition to the available methods for DNA methylation analysis but its complex design, incorporating two different assay methods, requires careful consideration. Accordingly, several normalization schemes have been published. We have taken advantage of known DNA methylation patterns associated with genomic imprinting and X-chromosome inactivation (XCI), in addition to the performance of SNP genotyping assays present on the array, to derive three independent metrics which we use to test alternative schemes of correction and normalization. These metrics also have potential utility as quality scores for datasets.\nRESULTS: The standard index of DNA methylation at any specific CpG site is \u03b2 = M/(M + U + 100) where M and U are methylated and unmethylated signal intensities, respectively. Betas (\u03b2s) calculated from raw signal intensities (the default GenomeStudio behavior) perform well, but using 11 methylomic datasets we demonstrate that quantile normalization methods produce marked improvement, even in highly consistent data, by all three metrics. The commonly used procedure of normalizing betas is inferior to the separate normalization of M and U, and it is also advantageous to normalize Type I and Type II assays separately. More elaborate manipulation of quantiles proves to be counterproductive.\nCONCLUSIONS: Careful selection of preprocessing steps can minimize variance and thus improve statistical power, especially for the detection of the small absolute DNA methylation changes likely associated with complex disease phenotypes. For the convenience of the research community we have created a user-friendly R software package called wateRmelon, downloadable from bioConductor, compatible with the existing methylumi, minfi and IMA packages, that allows others to utilize the same normalization methods and data quality tests on 450K data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-14-293", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2777039", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2448689", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "A data-driven approach to preprocessing Illumina 450K methylation array data", 
    "pagination": "293", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e935919339e99c48c59f05282d2537353a2d5e2dd9f56b52c4b585a0adc0ebbd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23631413"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-14-293"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048954126"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-14-293", 
      "https://app.dimensions.ai/details/publication/pub.1048954126"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-14-293"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-293'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-293'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-293'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-293'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      58 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-14-293 schema:about N36d3802bf53c4781b93b6af013f93381
2 N61b22f65c0324be8b5da6ca90eee17a7
3 N7f9b5f45bc33493c8f678121c5276fa9
4 N8f5683162ddc4681abb48a5c69435f9c
5 N91661c4d96414aed9ef2368a18c03006
6 Na59f168483194044a5df22dbe33a2c6f
7 Nb4fff9b37f2045e280e7b6bc9a5f4f9a
8 Nc6aeea6c78cf4d74b34b55e35ea546c0
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N35958e8185164756afff28ec618ef77c
12 schema:citation sg:pub.10.1007/0-387-29362-0_23
13 sg:pub.10.1007/s12017-012-8198-6
14 sg:pub.10.1186/1471-2105-11-587
15 sg:pub.10.1186/1471-2407-11-66
16 sg:pub.10.1186/1755-8794-4-84
17 sg:pub.10.1186/1756-0500-5-210
18 sg:pub.10.1186/gb-2004-5-10-r80
19 sg:pub.10.1186/gb-2012-13-6-r44
20 https://doi.org/10.1016/j.ygeno.2010.12.004
21 https://doi.org/10.1016/j.ygeno.2011.07.007
22 https://doi.org/10.1093/bioinformatics/bts013
23 https://doi.org/10.1093/bioinformatics/bts680
24 https://doi.org/10.1093/biostatistics/4.2.249
25 https://doi.org/10.1093/hmg/ddr416
26 https://doi.org/10.1093/ije/dyr225
27 https://doi.org/10.1371/journal.pgen.1002300
28 https://doi.org/10.2217/epi.09.14
29 https://doi.org/10.2217/epi.11.105
30 https://doi.org/10.2217/epi.12.21
31 https://doi.org/10.4161/epi.3.2.5900
32 https://doi.org/10.4161/epi.6.6.16196
33 schema:datePublished 2013-12
34 schema:datePublishedReg 2013-12-01
35 schema:description BACKGROUND: As the most stable and experimentally accessible epigenetic mark, DNA methylation is of great interest to the research community. The landscape of DNA methylation across tissues, through development and in disease pathogenesis is not yet well characterized. Thus there is a need for rapid and cost effective methods for assessing genome-wide levels of DNA methylation. The Illumina Infinium HumanMethylation450 (450K) BeadChip is a very useful addition to the available methods for DNA methylation analysis but its complex design, incorporating two different assay methods, requires careful consideration. Accordingly, several normalization schemes have been published. We have taken advantage of known DNA methylation patterns associated with genomic imprinting and X-chromosome inactivation (XCI), in addition to the performance of SNP genotyping assays present on the array, to derive three independent metrics which we use to test alternative schemes of correction and normalization. These metrics also have potential utility as quality scores for datasets. RESULTS: The standard index of DNA methylation at any specific CpG site is β = M/(M + U + 100) where M and U are methylated and unmethylated signal intensities, respectively. Betas (βs) calculated from raw signal intensities (the default GenomeStudio behavior) perform well, but using 11 methylomic datasets we demonstrate that quantile normalization methods produce marked improvement, even in highly consistent data, by all three metrics. The commonly used procedure of normalizing betas is inferior to the separate normalization of M and U, and it is also advantageous to normalize Type I and Type II assays separately. More elaborate manipulation of quantiles proves to be counterproductive. CONCLUSIONS: Careful selection of preprocessing steps can minimize variance and thus improve statistical power, especially for the detection of the small absolute DNA methylation changes likely associated with complex disease phenotypes. For the convenience of the research community we have created a user-friendly R software package called wateRmelon, downloadable from bioConductor, compatible with the existing methylumi, minfi and IMA packages, that allows others to utilize the same normalization methods and data quality tests on 450K data.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N45602f3910a846b38ce751d0b7e3d87e
40 Ne37cf994c2124ae7b119dd85c981f19e
41 sg:journal.1023790
42 schema:name A data-driven approach to preprocessing Illumina 450K methylation array data
43 schema:pagination 293
44 schema:productId N4e540f05b7424683a94ab6cb13c777e7
45 N6702289bb75e430c84feac290f2dfdb7
46 Nc4c232556e214086bd2a27b33a2abeaa
47 Ne5d9a3ff679f448e88fd9d359fd4947f
48 Nffd495769eac4d0bb00c495dea5b08e8
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048954126
50 https://doi.org/10.1186/1471-2164-14-293
51 schema:sdDatePublished 2019-04-10T20:46
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N6e822389548345c8b0e03b95de8528c8
54 schema:url http://link.springer.com/10.1186%2F1471-2164-14-293
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N35958e8185164756afff28ec618ef77c rdf:first sg:person.0775637006.01
59 rdf:rest N82096da93f46405c85ec26a3eeaafa66
60 N36d3802bf53c4781b93b6af013f93381 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Polymorphism, Single Nucleotide
62 rdf:type schema:DefinedTerm
63 N438c6486ba0d40918b2153c81332e135 rdf:first sg:person.01337470631.76
64 rdf:rest N79ded7d774db46a5ab14476ebd708696
65 N45602f3910a846b38ce751d0b7e3d87e schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N4e540f05b7424683a94ab6cb13c777e7 schema:name nlm_unique_id
68 schema:value 100965258
69 rdf:type schema:PropertyValue
70 N61b22f65c0324be8b5da6ca90eee17a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Genomic Imprinting
72 rdf:type schema:DefinedTerm
73 N66f69d291a85466393d3de40e026a9a8 rdf:first sg:person.01314323235.45
74 rdf:rest rdf:nil
75 N6702289bb75e430c84feac290f2dfdb7 schema:name readcube_id
76 schema:value e935919339e99c48c59f05282d2537353a2d5e2dd9f56b52c4b585a0adc0ebbd
77 rdf:type schema:PropertyValue
78 N6e822389548345c8b0e03b95de8528c8 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N79ded7d774db46a5ab14476ebd708696 rdf:first sg:person.0634726306.30
81 rdf:rest N66f69d291a85466393d3de40e026a9a8
82 N7f9b5f45bc33493c8f678121c5276fa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Statistics as Topic
84 rdf:type schema:DefinedTerm
85 N82096da93f46405c85ec26a3eeaafa66 rdf:first sg:person.010101604362.91
86 rdf:rest N9a20c2a8f37f4aa4ae0d912a580a807a
87 N8f5683162ddc4681abb48a5c69435f9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Oligonucleotide Array Sequence Analysis
89 rdf:type schema:DefinedTerm
90 N91661c4d96414aed9ef2368a18c03006 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name DNA Methylation
92 rdf:type schema:DefinedTerm
93 N9a20c2a8f37f4aa4ae0d912a580a807a rdf:first sg:person.01242346735.55
94 rdf:rest N438c6486ba0d40918b2153c81332e135
95 Na59f168483194044a5df22dbe33a2c6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Computational Biology
97 rdf:type schema:DefinedTerm
98 Nb4fff9b37f2045e280e7b6bc9a5f4f9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Chromosomes, Human, X
100 rdf:type schema:DefinedTerm
101 Nc4c232556e214086bd2a27b33a2abeaa schema:name dimensions_id
102 schema:value pub.1048954126
103 rdf:type schema:PropertyValue
104 Nc6aeea6c78cf4d74b34b55e35ea546c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 Ne37cf994c2124ae7b119dd85c981f19e schema:volumeNumber 14
108 rdf:type schema:PublicationVolume
109 Ne5d9a3ff679f448e88fd9d359fd4947f schema:name pubmed_id
110 schema:value 23631413
111 rdf:type schema:PropertyValue
112 Nffd495769eac4d0bb00c495dea5b08e8 schema:name doi
113 schema:value 10.1186/1471-2164-14-293
114 rdf:type schema:PropertyValue
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
119 schema:name Genetics
120 rdf:type schema:DefinedTerm
121 sg:grant.2448689 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-14-293
122 rdf:type schema:MonetaryGrant
123 sg:grant.2777039 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-14-293
124 rdf:type schema:MonetaryGrant
125 sg:journal.1023790 schema:issn 1471-2164
126 schema:name BMC Genomics
127 rdf:type schema:Periodical
128 sg:person.010101604362.91 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
129 schema:familyName Y Wong
130 schema:givenName Chloe C
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101604362.91
132 rdf:type schema:Person
133 sg:person.01242346735.55 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
134 schema:familyName Volta
135 schema:givenName Manuela
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242346735.55
137 rdf:type schema:Person
138 sg:person.01314323235.45 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
139 schema:familyName Schalkwyk
140 schema:givenName Leonard C
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314323235.45
142 rdf:type schema:Person
143 sg:person.01337470631.76 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
144 schema:familyName Lunnon
145 schema:givenName Katie
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337470631.76
147 rdf:type schema:Person
148 sg:person.0634726306.30 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
149 schema:familyName Mill
150 schema:givenName Jonathan
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634726306.30
152 rdf:type schema:Person
153 sg:person.0775637006.01 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
154 schema:familyName Pidsley
155 schema:givenName Ruth
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775637006.01
157 rdf:type schema:Person
158 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
159 https://doi.org/10.1007/0-387-29362-0_23
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s12017-012-8198-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015703526
162 https://doi.org/10.1007/s12017-012-8198-6
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-11-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448148
165 https://doi.org/10.1186/1471-2105-11-587
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1471-2407-11-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036923612
168 https://doi.org/10.1186/1471-2407-11-66
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1755-8794-4-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040448121
171 https://doi.org/10.1186/1755-8794-4-84
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1756-0500-5-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045434423
174 https://doi.org/10.1186/1756-0500-5-210
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
177 https://doi.org/10.1186/gb-2004-5-10-r80
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/gb-2012-13-6-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557760
180 https://doi.org/10.1186/gb-2012-13-6-r44
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ygeno.2010.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869263
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ygeno.2011.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029288477
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/bts013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003467505
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/bts680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923242
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/biostatistics/4.2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543114
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/hmg/ddr416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041956118
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/ije/dyr225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014663020
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pgen.1002300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030610127
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2217/epi.09.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042294074
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2217/epi.11.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005689442
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2217/epi.12.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006406279
203 rdf:type schema:CreativeWork
204 https://doi.org/10.4161/epi.3.2.5900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072302827
205 rdf:type schema:CreativeWork
206 https://doi.org/10.4161/epi.6.6.16196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072303171
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
209 schema:name Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
212 schema:name Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
213 University of Exeter Medical School, Exeter, UK
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...