Transcriptional and epigenetic signatures of zygotic genome activation during early drosophila embryogenesis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04-05

AUTHORS

Elodie Darbo, Carl Herrmann, Thomas Lecuit, Denis Thieffry, Jacques van Helden

ABSTRACT

BACKGROUND: In all Metazoa, transcription is inactive during the first mitotic cycles after fertilisation. In Drosophila melanogaster, Zygotic Genome Activation (ZGA) occurs in two waves, starting respectively at mitotic cycles 8 (approximately 60 genes) and 14 (over a thousand genes). The regulatory mechanisms underlying these drastic transcriptional changes remain largely unknown. RESULTS: We developed an original gene clustering method based on discretized transition profiles, and applied it to datasets from three landmark early embryonic transcriptome studies. We identified 417 genes significantly up-regulated during ZGA. De novo motif discovery returned nine motifs over-represented in their non-coding sequences (upstream, introns, UTR), three of which correspond to previously known transcription factors: Zelda, Tramtrack and Trithorax-like (Trl). The nine discovered motifs were combined to scan ZGA-associated regions and predict about 1300 putative cis-regulatory modules. The fact that Trl is known to act as chromatin remodelling factor suggests that epigenetic regulation might play an important role in zygotic genome activation. We thus systematically compared the locations of predicted CRMs with ChIP-seq profiles for various transcription factors, 38 epigenetic marks from ModENCODE, and DNAse1 accessibility profiles. This analysis highlighted a strong and specific enrichment of predicted ZGA-associated CRMs for Zelda, CBP, Trl binding sites, as well as for histone marks associated with active enhancers (H3K4me1) and for open chromatin regions. CONCLUSION: Based on the results of our computational analyses, we suggest a temporal model explaining the onset of zygotic genome activation by the combined action of transcription factors and epigenetic signals. Although this study is mainly based on the analysis of publicly available transcriptome and ChiP-seq datasets, the resulting model suggests novel mechanisms that underly the coordinated activation of several hundreds genes at a precise time point during embryonic development. More... »

PAGES

226-226

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-14-226

DOI

http://dx.doi.org/10.1186/1471-2164-14-226

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025136611

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23560912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embryonic Development", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenesis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Developmental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multigene Family", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleotide Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zygote", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Universit\u00e9 de la M\u00e9diterran\u00e9e, Campus de Luminy, 13288 Marseille Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.493853.0", 
          "name": [
            "Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Universit\u00e9 de la M\u00e9diterran\u00e9e, Campus de Luminy, 13288 Marseille Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Darbo", 
        "givenName": "Elodie", 
        "id": "sg:person.01206135236.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206135236.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Universit\u00e9 de la M\u00e9diterran\u00e9e, Campus de Luminy, 13288 Marseille Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.493853.0", 
          "name": [
            "Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Universit\u00e9 de la M\u00e9diterran\u00e9e, Campus de Luminy, 13288 Marseille Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrmann", 
        "givenName": "Carl", 
        "id": "sg:person.01123310611.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123310611.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie du D\u00e9veloppement de Marseille-Luminy (IBDML), UMR 7288 Case 907 - Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.462081.9", 
          "name": [
            "Institut de Biologie du D\u00e9veloppement de Marseille-Luminy (IBDML), UMR 7288 Case 907 - Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lecuit", 
        "givenName": "Thomas", 
        "id": "sg:person.01152001264.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152001264.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie de l\u2019Ecole Normale Sup\u00e9rieure (IBENS) - UMR ENS and CNRS 8197 and INSERM 1024, 46 rue d\u2019Ulm, 75005 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462036.5", 
          "name": [
            "Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Universit\u00e9 de la M\u00e9diterran\u00e9e, Campus de Luminy, 13288 Marseille Cedex 9, France", 
            "Institut de Biologie de l\u2019Ecole Normale Sup\u00e9rieure (IBENS) - UMR ENS and CNRS 8197 and INSERM 1024, 46 rue d\u2019Ulm, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thieffry", 
        "givenName": "Denis", 
        "id": "sg:person.0760716207.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760716207.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux (BiGRe), Universit\u00e9 Libre de Bruxelles, Campus Plaine, CP 263, Bld du Triomphe, B-1050 Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Universit\u00e9 de la M\u00e9diterran\u00e9e, Campus de Luminy, 13288 Marseille Cedex 9, France", 
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux (BiGRe), Universit\u00e9 Libre de Bruxelles, Campus Plaine, CP 263, Bld du Triomphe, B-1050 Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "id": "sg:person.0626672543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2009-10-7-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031389085", 
          "https://doi.org/10.1186/gb-2009-10-7-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015455991", 
          "https://doi.org/10.1038/nature07388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009423541", 
          "https://doi.org/10.1038/nprot.2012.088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-6-r101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025233083", 
          "https://doi.org/10.1186/gb-2007-8-6-r101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011667398", 
          "https://doi.org/10.1038/nprot.2008.98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023233286", 
          "https://doi.org/10.1038/nature09725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006340595", 
          "https://doi.org/10.1038/nprot.2008.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006139807", 
          "https://doi.org/10.1038/nature09990"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04-05", 
    "datePublishedReg": "2013-04-05", 
    "description": "BACKGROUND: In all Metazoa, transcription is inactive during the first mitotic cycles after fertilisation. In Drosophila melanogaster, Zygotic Genome Activation (ZGA) occurs in two waves, starting respectively at mitotic cycles 8 (approximately 60 genes) and 14 (over a thousand genes). The regulatory mechanisms underlying these drastic transcriptional changes remain largely unknown.\nRESULTS: We developed an original gene clustering method based on discretized transition profiles, and applied it to datasets from three landmark early embryonic transcriptome studies. We identified 417 genes significantly up-regulated during ZGA. De novo\u2009motif discovery returned nine motifs over-represented in their non-coding sequences (upstream, introns, UTR), three of which correspond to previously known transcription factors: Zelda, Tramtrack and Trithorax-like (Trl). The nine discovered motifs were combined to scan ZGA-associated regions and predict about 1300 putative cis-regulatory modules. The fact that Trl is known to act as chromatin remodelling factor suggests that epigenetic regulation might play an important role in zygotic genome activation. We thus systematically compared the locations of predicted CRMs with ChIP-seq profiles for various transcription factors, 38 epigenetic marks from ModENCODE, and DNAse1 accessibility profiles. This analysis highlighted a strong and specific enrichment of predicted ZGA-associated CRMs for Zelda, CBP, Trl binding sites, as well as for histone marks associated with active enhancers (H3K4me1) and for open chromatin regions.\nCONCLUSION: Based on the results of our computational analyses, we suggest a temporal model explaining the onset of zygotic genome activation by the combined action of transcription factors and epigenetic signals. Although this study is mainly based on the analysis of publicly available transcriptome and ChiP-seq datasets, the resulting model suggests novel mechanisms that underly the coordinated activation of several hundreds genes at a precise time point during embryonic development.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-14-226", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "zygotic genome activation", 
      "genome activation", 
      "transcription factors", 
      "putative cis-regulatory modules", 
      "early Drosophila embryogenesis", 
      "open chromatin regions", 
      "cis-regulatory modules", 
      "ChIP-seq profiles", 
      "non-coding sequences", 
      "first mitotic cycle", 
      "ChIP-seq datasets", 
      "available transcriptomes", 
      "epigenetic marks", 
      "epigenetic signals", 
      "Drosophila embryogenesis", 
      "histone marks", 
      "gene clustering method", 
      "chromatin regions", 
      "Drosophila melanogaster", 
      "hundreds genes", 
      "epigenetic regulation", 
      "transcriptome studies", 
      "active enhancers", 
      "transcriptional changes", 
      "epigenetic signatures", 
      "accessibility profiles", 
      "embryonic development", 
      "regulatory mechanisms", 
      "mitotic cycle", 
      "coordinated activation", 
      "precise time points", 
      "novel mechanism", 
      "specific enrichment", 
      "de novo", 
      "motif discovery", 
      "genes", 
      "Zelda", 
      "motif", 
      "computational analysis", 
      "activation", 
      "modENCODE", 
      "trithorax", 
      "metazoans", 
      "Tramtrack", 
      "melanogaster", 
      "transcriptome", 
      "chromatin", 
      "important role", 
      "embryogenesis", 
      "transcription", 
      "CBP", 
      "enhancer", 
      "regulation", 
      "marks", 
      "novo", 
      "mechanism", 
      "sequence", 
      "fertilization", 
      "cycle 8", 
      "region", 
      "discovery", 
      "enrichment", 
      "factors", 
      "sites", 
      "profile", 
      "role", 
      "analysis", 
      "signatures", 
      "TRL", 
      "cycle", 
      "time points", 
      "transition profiles", 
      "signals", 
      "development", 
      "dataset", 
      "study", 
      "action", 
      "changes", 
      "location", 
      "clustering method", 
      "module", 
      "results", 
      "model", 
      "fact", 
      "temporal model", 
      "onset", 
      "CRM", 
      "point", 
      "method", 
      "waves", 
      "mitotic cycles 8", 
      "drastic transcriptional changes", 
      "original gene clustering method", 
      "landmark early embryonic transcriptome studies", 
      "early embryonic transcriptome studies", 
      "embryonic transcriptome studies"
    ], 
    "name": "Transcriptional and epigenetic signatures of zygotic genome activation during early drosophila embryogenesis", 
    "pagination": "226-226", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025136611"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-14-226"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23560912"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-14-226", 
      "https://app.dimensions.ai/details/publication/pub.1025136611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_612.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-14-226"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-226'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-226'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-226'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-14-226'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      22 PREDICATES      143 URIs      126 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-14-226 schema:about N0a654f7000414291b3c9f12f9737fcf7
2 N31d284b9882e49edba57485557686282
3 N52ff34db04714db399c4eaa16377eb95
4 N88c667cb632b4ee5a0d633ab277ebcf0
5 N8b304410617b481086c37639bb056550
6 N8ec25cd4d79e48d9b05b9e5036549423
7 Nc431bb51ad9b416eaffc167c1a706313
8 Nc75ab5bb55b844cc89bb8828c2b215f4
9 Nded291a749704790bfa06987c54e5ab7
10 Nf1df80ffd93f40ba9e36821947c01fad
11 Nf382e16578634e8c9b14ba2e346ef068
12 Nfb82f80fca9e482da828208555f4e18b
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N595bfd823d3d4038b1bc63de163479b2
16 schema:citation sg:pub.10.1038/nature07388
17 sg:pub.10.1038/nature09725
18 sg:pub.10.1038/nature09990
19 sg:pub.10.1038/nprot.2008.97
20 sg:pub.10.1038/nprot.2008.98
21 sg:pub.10.1038/nprot.2012.088
22 sg:pub.10.1186/gb-2004-5-10-r80
23 sg:pub.10.1186/gb-2007-8-6-r101
24 sg:pub.10.1186/gb-2009-10-7-r80
25 schema:datePublished 2013-04-05
26 schema:datePublishedReg 2013-04-05
27 schema:description BACKGROUND: In all Metazoa, transcription is inactive during the first mitotic cycles after fertilisation. In Drosophila melanogaster, Zygotic Genome Activation (ZGA) occurs in two waves, starting respectively at mitotic cycles 8 (approximately 60 genes) and 14 (over a thousand genes). The regulatory mechanisms underlying these drastic transcriptional changes remain largely unknown. RESULTS: We developed an original gene clustering method based on discretized transition profiles, and applied it to datasets from three landmark early embryonic transcriptome studies. We identified 417 genes significantly up-regulated during ZGA. De novo motif discovery returned nine motifs over-represented in their non-coding sequences (upstream, introns, UTR), three of which correspond to previously known transcription factors: Zelda, Tramtrack and Trithorax-like (Trl). The nine discovered motifs were combined to scan ZGA-associated regions and predict about 1300 putative cis-regulatory modules. The fact that Trl is known to act as chromatin remodelling factor suggests that epigenetic regulation might play an important role in zygotic genome activation. We thus systematically compared the locations of predicted CRMs with ChIP-seq profiles for various transcription factors, 38 epigenetic marks from ModENCODE, and DNAse1 accessibility profiles. This analysis highlighted a strong and specific enrichment of predicted ZGA-associated CRMs for Zelda, CBP, Trl binding sites, as well as for histone marks associated with active enhancers (H3K4me1) and for open chromatin regions. CONCLUSION: Based on the results of our computational analyses, we suggest a temporal model explaining the onset of zygotic genome activation by the combined action of transcription factors and epigenetic signals. Although this study is mainly based on the analysis of publicly available transcriptome and ChiP-seq datasets, the resulting model suggests novel mechanisms that underly the coordinated activation of several hundreds genes at a precise time point during embryonic development.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N2681a36bd4af4f1ca677320c55ee333c
32 N9d1f8ba7adb94dbaa40d72366985114e
33 sg:journal.1023790
34 schema:keywords CBP
35 CRM
36 ChIP-seq datasets
37 ChIP-seq profiles
38 Drosophila embryogenesis
39 Drosophila melanogaster
40 TRL
41 Tramtrack
42 Zelda
43 accessibility profiles
44 action
45 activation
46 active enhancers
47 analysis
48 available transcriptomes
49 changes
50 chromatin
51 chromatin regions
52 cis-regulatory modules
53 clustering method
54 computational analysis
55 coordinated activation
56 cycle
57 cycle 8
58 dataset
59 de novo
60 development
61 discovery
62 drastic transcriptional changes
63 early Drosophila embryogenesis
64 early embryonic transcriptome studies
65 embryogenesis
66 embryonic development
67 embryonic transcriptome studies
68 enhancer
69 enrichment
70 epigenetic marks
71 epigenetic regulation
72 epigenetic signals
73 epigenetic signatures
74 fact
75 factors
76 fertilization
77 first mitotic cycle
78 gene clustering method
79 genes
80 genome activation
81 histone marks
82 hundreds genes
83 important role
84 landmark early embryonic transcriptome studies
85 location
86 marks
87 mechanism
88 melanogaster
89 metazoans
90 method
91 mitotic cycle
92 mitotic cycles 8
93 modENCODE
94 model
95 module
96 motif
97 motif discovery
98 non-coding sequences
99 novel mechanism
100 novo
101 onset
102 open chromatin regions
103 original gene clustering method
104 point
105 precise time points
106 profile
107 putative cis-regulatory modules
108 region
109 regulation
110 regulatory mechanisms
111 results
112 role
113 sequence
114 signals
115 signatures
116 sites
117 specific enrichment
118 study
119 temporal model
120 time points
121 transcription
122 transcription factors
123 transcriptional changes
124 transcriptome
125 transcriptome studies
126 transition profiles
127 trithorax
128 waves
129 zygotic genome activation
130 schema:name Transcriptional and epigenetic signatures of zygotic genome activation during early drosophila embryogenesis
131 schema:pagination 226-226
132 schema:productId N896ea0f211734fd6ae84b7fc856a513f
133 N9be48f2ae9014ea2a0fe8cdf834ec66d
134 Ne1d193b87f73489dbc8adf444f272bcb
135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025136611
136 https://doi.org/10.1186/1471-2164-14-226
137 schema:sdDatePublished 2022-01-01T18:31
138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
139 schema:sdPublisher N87223ea297af4937a393f0d40b3d4102
140 schema:url https://doi.org/10.1186/1471-2164-14-226
141 sgo:license sg:explorer/license/
142 sgo:sdDataset articles
143 rdf:type schema:ScholarlyArticle
144 N0a654f7000414291b3c9f12f9737fcf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Gene Expression Profiling
146 rdf:type schema:DefinedTerm
147 N0beba82f67eb48cc9e4390c602665de5 rdf:first sg:person.0626672543.46
148 rdf:rest rdf:nil
149 N2681a36bd4af4f1ca677320c55ee333c schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 N31d284b9882e49edba57485557686282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Epigenesis, Genetic
153 rdf:type schema:DefinedTerm
154 N52ff34db04714db399c4eaa16377eb95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Base Sequence
156 rdf:type schema:DefinedTerm
157 N595bfd823d3d4038b1bc63de163479b2 rdf:first sg:person.01206135236.18
158 rdf:rest Nea082ff933e041aeaf40fd4e1e3014e7
159 N87223ea297af4937a393f0d40b3d4102 schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 N88c667cb632b4ee5a0d633ab277ebcf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Gene Expression Regulation, Developmental
163 rdf:type schema:DefinedTerm
164 N896ea0f211734fd6ae84b7fc856a513f schema:name doi
165 schema:value 10.1186/1471-2164-14-226
166 rdf:type schema:PropertyValue
167 N8b304410617b481086c37639bb056550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Animals
169 rdf:type schema:DefinedTerm
170 N8ec25cd4d79e48d9b05b9e5036549423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Embryonic Development
172 rdf:type schema:DefinedTerm
173 N9be48f2ae9014ea2a0fe8cdf834ec66d schema:name dimensions_id
174 schema:value pub.1025136611
175 rdf:type schema:PropertyValue
176 N9d1f8ba7adb94dbaa40d72366985114e schema:volumeNumber 14
177 rdf:type schema:PublicationVolume
178 Nc431bb51ad9b416eaffc167c1a706313 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Zygote
180 rdf:type schema:DefinedTerm
181 Nc75ab5bb55b844cc89bb8828c2b215f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Nucleotide Motifs
183 rdf:type schema:DefinedTerm
184 Nd55f4cc05d68459a94cb21739ded3a2a rdf:first sg:person.01152001264.33
185 rdf:rest Nddc207362c4f4a96a6c3f91378226579
186 Nddc207362c4f4a96a6c3f91378226579 rdf:first sg:person.0760716207.75
187 rdf:rest N0beba82f67eb48cc9e4390c602665de5
188 Nded291a749704790bfa06987c54e5ab7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Transcription, Genetic
190 rdf:type schema:DefinedTerm
191 Ne1d193b87f73489dbc8adf444f272bcb schema:name pubmed_id
192 schema:value 23560912
193 rdf:type schema:PropertyValue
194 Nea082ff933e041aeaf40fd4e1e3014e7 rdf:first sg:person.01123310611.66
195 rdf:rest Nd55f4cc05d68459a94cb21739ded3a2a
196 Nf1df80ffd93f40ba9e36821947c01fad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Drosophila melanogaster
198 rdf:type schema:DefinedTerm
199 Nf382e16578634e8c9b14ba2e346ef068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Multigene Family
201 rdf:type schema:DefinedTerm
202 Nfb82f80fca9e482da828208555f4e18b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Genome
204 rdf:type schema:DefinedTerm
205 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
206 schema:name Biological Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
209 schema:name Genetics
210 rdf:type schema:DefinedTerm
211 sg:journal.1023790 schema:issn 1471-2164
212 schema:name BMC Genomics
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01123310611.66 schema:affiliation grid-institutes:grid.493853.0
216 schema:familyName Herrmann
217 schema:givenName Carl
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123310611.66
219 rdf:type schema:Person
220 sg:person.01152001264.33 schema:affiliation grid-institutes:grid.462081.9
221 schema:familyName Lecuit
222 schema:givenName Thomas
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152001264.33
224 rdf:type schema:Person
225 sg:person.01206135236.18 schema:affiliation grid-institutes:grid.493853.0
226 schema:familyName Darbo
227 schema:givenName Elodie
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206135236.18
229 rdf:type schema:Person
230 sg:person.0626672543.46 schema:affiliation grid-institutes:grid.4989.c
231 schema:familyName van Helden
232 schema:givenName Jacques
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46
234 rdf:type schema:Person
235 sg:person.0760716207.75 schema:affiliation grid-institutes:grid.462036.5
236 schema:familyName Thieffry
237 schema:givenName Denis
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760716207.75
239 rdf:type schema:Person
240 sg:pub.10.1038/nature07388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015455991
241 https://doi.org/10.1038/nature07388
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nature09725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023233286
244 https://doi.org/10.1038/nature09725
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nature09990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006139807
247 https://doi.org/10.1038/nature09990
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/nprot.2008.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006340595
250 https://doi.org/10.1038/nprot.2008.97
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/nprot.2008.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011667398
253 https://doi.org/10.1038/nprot.2008.98
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/nprot.2012.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009423541
256 https://doi.org/10.1038/nprot.2012.088
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
259 https://doi.org/10.1186/gb-2004-5-10-r80
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/gb-2007-8-6-r101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025233083
262 https://doi.org/10.1186/gb-2007-8-6-r101
263 rdf:type schema:CreativeWork
264 sg:pub.10.1186/gb-2009-10-7-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031389085
265 https://doi.org/10.1186/gb-2009-10-7-r80
266 rdf:type schema:CreativeWork
267 grid-institutes:grid.462036.5 schema:alternateName Institut de Biologie de l’Ecole Normale Supérieure (IBENS) - UMR ENS and CNRS 8197 and INSERM 1024, 46 rue d’Ulm, 75005 Paris, France
268 schema:name Institut de Biologie de l’Ecole Normale Supérieure (IBENS) - UMR ENS and CNRS 8197 and INSERM 1024, 46 rue d’Ulm, 75005 Paris, France
269 Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Campus de Luminy, 13288 Marseille Cedex 9, France
270 rdf:type schema:Organization
271 grid-institutes:grid.462081.9 schema:alternateName Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR 7288 Case 907 - Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
272 schema:name Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR 7288 Case 907 - Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
273 rdf:type schema:Organization
274 grid-institutes:grid.493853.0 schema:alternateName Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Campus de Luminy, 13288 Marseille Cedex 9, France
275 schema:name Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Campus de Luminy, 13288 Marseille Cedex 9, France
276 rdf:type schema:Organization
277 grid-institutes:grid.4989.c schema:alternateName Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Campus Plaine, CP 263, Bld du Triomphe, B-1050 Bruxelles, Belgium
278 schema:name Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Campus Plaine, CP 263, Bld du Triomphe, B-1050 Bruxelles, Belgium
279 Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Campus de Luminy, 13288 Marseille Cedex 9, France
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...