Comprehensive analysis of microRNAs in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12-13

AUTHORS

Hong-Tai Chang, Sung-Chou Li, Meng-Ru Ho, Hung-Wei Pan, Luo-Ping Ger, Ling-Yueh Hu, Shou-Yu Yu, Wen-Hsiung Li, Kuo-Wang Tsai

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in breast cancer progression by downregulating gene expression. The detailed mechanisms and biological functions of miRNA molecules in breast carcinogenesis have yet to be fully elucidated. This study used bioinformatics and experimental approaches to conduct detailed analysis of the dysregulated miRNAs, arm selection preferences, 3' end modifications, and position shifts in isoforms of miRNAs (isomiRs) in breast cancer. METHODS: Next-generation sequencing (NGS) data on breast cancer was obtained from the NCBI Sequence Read Archive (SRA). The miRNA expression profiles and isomiRs in normal breast and breast tumor tissues were determined by mapping the clean reads back to human miRNAs. Differences in miRNA expression and pre-miRNA 5p/3p arm usage between normal and breast tumor tissues were further investigated using stem-loop reverse transcription and real-time polymerase chain reaction. RESULTS: The analysis identified and confirmed the aberrant expression of 22 miRNAs in breast cancer. Results from pathway enrichment analysis further indicated that the aberrantly expressed miRNAs play important roles in breast carcinogenesis by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Data also indicated that the position shifts in isomiRs and 3' end modifications were consistent in breast tumor and adjacent normal tissues, and that 5p/3p arm usage of some miRNAs displayed significant preferences in breast cancer. CONCLUSIONS: Expression pattern and arm selection of miRNAs are significantly varied in breast cancers through analyzing NGS data and experimental approach. These miRNA candidates have high potential to play critical roles in the progression of breast cancer and could potentially provide as targets for future therapy. More... »

PAGES

s18-s18

References to SciGraph publications

  • 2012-03-06. Consistent isomiR expression patterns and 3′ addition events in miRNA gene clusters and families implicate functional and evolutionary relationships in MOLECULAR BIOLOGY REPORTS
  • 2011-03-12. miRNA-34a is associated with docetaxel resistance in human breast cancer cells in BREAST CANCER RESEARCH AND TREATMENT
  • 2009-02-22. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells in BMC MOLECULAR AND CELL BIOLOGY
  • 2010-08-03. Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening in BRITISH JOURNAL OF CANCER
  • 2006-05-30. microRNA target predictions in animals in NATURE GENETICS
  • 2006-12-18. MicroTar: predicting microRNA targets from RNA duplexes in BMC BIOINFORMATICS
  • 2011-03-04. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer in BREAST CANCER RESEARCH
  • 2011-08-07. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization in NATURE MEDICINE
  • 2011-03-07. MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways in ONCOGENE
  • 2012-01-17. miRNA arm selection and isomiR distribution in gastric cancer in BMC GENOMICS
  • 2005-04-03. Combinatorial microRNA target predictions in NATURE GENETICS
  • 2010-11-22. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc in JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
  • 2007-05-14. MAP kinase signalling pathways in cancer in ONCOGENE
  • 2012-02-01. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2011-02-15. UMARS: Un-MAppable Reads Solution in BMC BIOINFORMATICS
  • 2011-03-17. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes in BREAST CANCER RESEARCH AND TREATMENT
  • 2009-03-04. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2011-12-30. MicroRNAs and their isomiRs function cooperatively to target common biological pathways in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-13-s7-s18

    DOI

    http://dx.doi.org/10.1186/1471-2164-13-s7-s18

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019199457

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23281739


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "3' Untranslated Regions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "5' Untranslated Regions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MAP Kinase Signaling System", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitogen-Activated Protein Kinases", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.415011.0", 
              "name": [
                "Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China", 
                "Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Hong-Tai", 
            "id": "sg:person.014034650164.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034650164.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.506938.1", 
              "name": [
                "Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Sung-Chou", 
            "id": "sg:person.01135535115.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135535115.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.506939.0", 
              "name": [
                "Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ho", 
            "givenName": "Meng-Ru", 
            "id": "sg:person.01055514752.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055514752.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.415011.0", 
              "name": [
                "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "Hung-Wei", 
            "id": "sg:person.01012741270.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012741270.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.415011.0", 
              "name": [
                "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ger", 
            "givenName": "Luo-Ping", 
            "id": "sg:person.0750031705.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750031705.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.482251.8", 
              "name": [
                "Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Ling-Yueh", 
            "id": "sg:person.01306171752.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306171752.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.415011.0", 
              "name": [
                "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Shou-Yu", 
            "id": "sg:person.0636441050.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636441050.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA", 
              "id": "http://www.grid.ac/institutes/grid.170205.1", 
              "name": [
                "Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China", 
                "Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Wen-Hsiung", 
            "id": "sg:person.0667163425.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667163425.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, Tajen University, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412902.c", 
              "name": [
                "Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China", 
                "Department of Biotechnology, Tajen University, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsai", 
            "givenName": "Kuo-Wang", 
            "id": "sg:person.01171743352.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171743352.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1756-9966-29-151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048172862", 
              "https://doi.org/10.1186/1756-9966-29-151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-011-1424-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020569096", 
              "https://doi.org/10.1007/s10549-011-1424-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2011.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022913195", 
              "https://doi.org/10.1038/onc.2011.63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013306597", 
              "https://doi.org/10.1038/nm.2401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1210421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002864504", 
              "https://doi.org/10.1038/sj.onc.1210421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-012-1969-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048364712", 
              "https://doi.org/10.1007/s10549-012-1969-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037192337", 
              "https://doi.org/10.1038/ng1536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011753396", 
              "https://doi.org/10.1038/ng1798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-010-1303-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008297332", 
              "https://doi.org/10.1007/s10549-010-1303-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-s5-s20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008084081", 
              "https://doi.org/10.1186/1471-2105-7-s5-s20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-s1-s13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036210359", 
              "https://doi.org/10.1186/1471-2164-13-s1-s13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2199-10-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046654979", 
              "https://doi.org/10.1186/1471-2199-10-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6605833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046818587", 
              "https://doi.org/10.1038/sj.bjc.6605833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-012-1493-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034488585", 
              "https://doi.org/10.1007/s11033-012-1493-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009101031", 
              "https://doi.org/10.1186/bcr2839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-12-r126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011913309", 
              "https://doi.org/10.1186/gb-2011-12-12-r126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-s1-s9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006835544", 
              "https://doi.org/10.1186/1471-2105-12-s1-s9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-12-13", 
        "datePublishedReg": "2012-12-13", 
        "description": "BACKGROUND: MicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in breast cancer progression by downregulating gene expression. The detailed mechanisms and biological functions of miRNA molecules in breast carcinogenesis have yet to be fully elucidated. This study used bioinformatics and experimental approaches to conduct detailed analysis of the dysregulated miRNAs, arm selection preferences, 3' end modifications, and position shifts in isoforms of miRNAs (isomiRs) in breast cancer.\nMETHODS: Next-generation sequencing (NGS) data on breast cancer was obtained from the NCBI Sequence Read Archive (SRA). The miRNA expression profiles and isomiRs in normal breast and breast tumor tissues were determined by mapping the clean reads back to human miRNAs. Differences in miRNA expression and pre-miRNA 5p/3p arm usage between normal and breast tumor tissues were further investigated using stem-loop reverse transcription and real-time polymerase chain reaction.\nRESULTS: The analysis identified and confirmed the aberrant expression of 22 miRNAs in breast cancer. Results from pathway enrichment analysis further indicated that the aberrantly expressed miRNAs play important roles in breast carcinogenesis by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Data also indicated that the position shifts in isomiRs and 3' end modifications were consistent in breast tumor and adjacent normal tissues, and that 5p/3p arm usage of some miRNAs displayed significant preferences in breast cancer.\nCONCLUSIONS: Expression pattern and arm selection of miRNAs are significantly varied in breast cancers through analyzing NGS data and experimental approach. These miRNA candidates have high potential to play critical roles in the progression of breast cancer and could potentially provide as targets for future therapy.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-13-s7-s18", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "mitogen-activated protein kinase", 
          "end modification", 
          "arm selection preference", 
          "isoforms of miRNAs", 
          "pathway enrichment analysis", 
          "short noncoding RNAs", 
          "stem-loop reverse transcription", 
          "next-generation sequencing data", 
          "miRNA expression profiles", 
          "clean reads", 
          "noncoding RNAs", 
          "protein kinase", 
          "NCBI Sequence", 
          "enrichment analysis", 
          "human miRNAs", 
          "biological functions", 
          "miRNA candidates", 
          "breast cancer progression", 
          "gene expression", 
          "sequencing data", 
          "expression patterns", 
          "expression profiles", 
          "breast tumor tissues", 
          "miRNA molecules", 
          "miRNAs", 
          "experimental approach", 
          "miRNA expression", 
          "cancer progression", 
          "aberrant expression", 
          "important role", 
          "isomiRs", 
          "NGS data", 
          "adjacent normal tissues", 
          "breast carcinogenesis", 
          "real-time polymerase chain reaction", 
          "microRNAs", 
          "critical role", 
          "reverse transcription", 
          "detailed mechanism", 
          "expression", 
          "significant preference", 
          "arm usage", 
          "tumor tissue", 
          "polymerase chain reaction", 
          "arm selection", 
          "transcription", 
          "comprehensive analysis", 
          "kinase", 
          "normal tissues", 
          "selection preferences", 
          "tissue", 
          "RNA", 
          "chain reaction", 
          "carcinogenesis", 
          "bioinformatics", 
          "role", 
          "isoforms", 
          "future therapies", 
          "reads", 
          "pathway", 
          "sequence", 
          "breast cancer", 
          "progression", 
          "modification", 
          "cancer", 
          "breast tumors", 
          "normal breast", 
          "target", 
          "detailed analysis", 
          "molecules", 
          "high potential", 
          "mechanism", 
          "analysis", 
          "selection", 
          "preferences", 
          "function", 
          "patterns", 
          "data", 
          "potential", 
          "profile", 
          "candidates", 
          "shift", 
          "tumors", 
          "study", 
          "differences", 
          "approach", 
          "position", 
          "results", 
          "reaction", 
          "breast", 
          "usage", 
          "position shifts", 
          "therapy", 
          "archives"
        ], 
        "name": "Comprehensive analysis of microRNAs in breast cancer", 
        "pagination": "s18-s18", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019199457"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-13-s7-s18"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23281739"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-13-s7-s18", 
          "https://app.dimensions.ai/details/publication/pub.1019199457"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_582.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-13-s7-s18"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-s7-s18'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-s7-s18'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-s7-s18'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-s7-s18'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      22 PREDICATES      149 URIs      123 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-13-s7-s18 schema:about N39523312d4924f9bbf504e03d827f4cf
    2 N40ca5afb5e9a43298edb784dd6ae9585
    3 N5009583828874c488a5dfed448141c98
    4 N54fdcad6605a4f8ca4389a439ce42155
    5 N6046117226ef4a859b2b4b8195f8f437
    6 N654c9652279c4a9791db905c3cbf3d95
    7 N689d1edda361487e9ca27080bc57c97c
    8 N752c50d1ad4747b1b56003aacd4f9f9d
    9 N7f0175e8fd944abbab5641fabbd0a466
    10 Nc1a825ab78824bc0b71578ab50defbdb
    11 Nd1c17fd45abc4cbb806da681ab8bf69f
    12 anzsrc-for:11
    13 anzsrc-for:1112
    14 schema:author Nb2d6d97d01af4d1baa451983376f2374
    15 schema:citation sg:pub.10.1007/s10549-010-1303-3
    16 sg:pub.10.1007/s10549-011-1424-3
    17 sg:pub.10.1007/s10549-012-1969-9
    18 sg:pub.10.1007/s11033-012-1493-3
    19 sg:pub.10.1038/ng1536
    20 sg:pub.10.1038/ng1798
    21 sg:pub.10.1038/nm.2401
    22 sg:pub.10.1038/onc.2011.63
    23 sg:pub.10.1038/sj.bjc.6605833
    24 sg:pub.10.1038/sj.onc.1210421
    25 sg:pub.10.1186/1471-2105-12-s1-s9
    26 sg:pub.10.1186/1471-2105-7-s5-s20
    27 sg:pub.10.1186/1471-2164-13-s1-s13
    28 sg:pub.10.1186/1471-2199-10-12
    29 sg:pub.10.1186/1756-9966-29-151
    30 sg:pub.10.1186/bcr2839
    31 sg:pub.10.1186/gb-2009-10-3-r25
    32 sg:pub.10.1186/gb-2011-12-12-r126
    33 schema:datePublished 2012-12-13
    34 schema:datePublishedReg 2012-12-13
    35 schema:description BACKGROUND: MicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in breast cancer progression by downregulating gene expression. The detailed mechanisms and biological functions of miRNA molecules in breast carcinogenesis have yet to be fully elucidated. This study used bioinformatics and experimental approaches to conduct detailed analysis of the dysregulated miRNAs, arm selection preferences, 3' end modifications, and position shifts in isoforms of miRNAs (isomiRs) in breast cancer. METHODS: Next-generation sequencing (NGS) data on breast cancer was obtained from the NCBI Sequence Read Archive (SRA). The miRNA expression profiles and isomiRs in normal breast and breast tumor tissues were determined by mapping the clean reads back to human miRNAs. Differences in miRNA expression and pre-miRNA 5p/3p arm usage between normal and breast tumor tissues were further investigated using stem-loop reverse transcription and real-time polymerase chain reaction. RESULTS: The analysis identified and confirmed the aberrant expression of 22 miRNAs in breast cancer. Results from pathway enrichment analysis further indicated that the aberrantly expressed miRNAs play important roles in breast carcinogenesis by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Data also indicated that the position shifts in isomiRs and 3' end modifications were consistent in breast tumor and adjacent normal tissues, and that 5p/3p arm usage of some miRNAs displayed significant preferences in breast cancer. CONCLUSIONS: Expression pattern and arm selection of miRNAs are significantly varied in breast cancers through analyzing NGS data and experimental approach. These miRNA candidates have high potential to play critical roles in the progression of breast cancer and could potentially provide as targets for future therapy.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N363d22d6e1684443bcacc0bed6882d71
    40 N6e8efd0fdae64e09aa5572313a05715a
    41 sg:journal.1023790
    42 schema:keywords NCBI Sequence
    43 NGS data
    44 RNA
    45 aberrant expression
    46 adjacent normal tissues
    47 analysis
    48 approach
    49 archives
    50 arm selection
    51 arm selection preference
    52 arm usage
    53 bioinformatics
    54 biological functions
    55 breast
    56 breast cancer
    57 breast cancer progression
    58 breast carcinogenesis
    59 breast tumor tissues
    60 breast tumors
    61 cancer
    62 cancer progression
    63 candidates
    64 carcinogenesis
    65 chain reaction
    66 clean reads
    67 comprehensive analysis
    68 critical role
    69 data
    70 detailed analysis
    71 detailed mechanism
    72 differences
    73 end modification
    74 enrichment analysis
    75 experimental approach
    76 expression
    77 expression patterns
    78 expression profiles
    79 function
    80 future therapies
    81 gene expression
    82 high potential
    83 human miRNAs
    84 important role
    85 isoforms
    86 isoforms of miRNAs
    87 isomiRs
    88 kinase
    89 mechanism
    90 miRNA candidates
    91 miRNA expression
    92 miRNA expression profiles
    93 miRNA molecules
    94 miRNAs
    95 microRNAs
    96 mitogen-activated protein kinase
    97 modification
    98 molecules
    99 next-generation sequencing data
    100 noncoding RNAs
    101 normal breast
    102 normal tissues
    103 pathway
    104 pathway enrichment analysis
    105 patterns
    106 polymerase chain reaction
    107 position
    108 position shifts
    109 potential
    110 preferences
    111 profile
    112 progression
    113 protein kinase
    114 reaction
    115 reads
    116 real-time polymerase chain reaction
    117 results
    118 reverse transcription
    119 role
    120 selection
    121 selection preferences
    122 sequence
    123 sequencing data
    124 shift
    125 short noncoding RNAs
    126 significant preference
    127 stem-loop reverse transcription
    128 study
    129 target
    130 therapy
    131 tissue
    132 transcription
    133 tumor tissue
    134 tumors
    135 usage
    136 schema:name Comprehensive analysis of microRNAs in breast cancer
    137 schema:pagination s18-s18
    138 schema:productId N4b0f784c833c481ebbfa8c70ffff8eaf
    139 Nd05023947c224cf3b9a0200d8c432c1d
    140 Ne7d2484cdf0a4e91904100ffce52e3ef
    141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019199457
    142 https://doi.org/10.1186/1471-2164-13-s7-s18
    143 schema:sdDatePublished 2022-01-01T18:29
    144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    145 schema:sdPublisher Nbcef929e3e3b4116be9ccd74b7b2d815
    146 schema:url https://doi.org/10.1186/1471-2164-13-s7-s18
    147 sgo:license sg:explorer/license/
    148 sgo:sdDataset articles
    149 rdf:type schema:ScholarlyArticle
    150 N363d22d6e1684443bcacc0bed6882d71 schema:volumeNumber 13
    151 rdf:type schema:PublicationVolume
    152 N39523312d4924f9bbf504e03d827f4cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Databases, Genetic
    154 rdf:type schema:DefinedTerm
    155 N40ca5afb5e9a43298edb784dd6ae9585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Gene Expression Profiling
    157 rdf:type schema:DefinedTerm
    158 N4957d60f3905497d953e4be54e74cd6d rdf:first sg:person.01171743352.70
    159 rdf:rest rdf:nil
    160 N4b0f784c833c481ebbfa8c70ffff8eaf schema:name dimensions_id
    161 schema:value pub.1019199457
    162 rdf:type schema:PropertyValue
    163 N4e97c898f2404ed2b42f27e9a467b755 rdf:first sg:person.01012741270.15
    164 rdf:rest N9985e1cb59fe48278e0aeec4a8ba5112
    165 N5009583828874c488a5dfed448141c98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name 3' Untranslated Regions
    167 rdf:type schema:DefinedTerm
    168 N54fdcad6605a4f8ca4389a439ce42155 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Mitogen-Activated Protein Kinases
    170 rdf:type schema:DefinedTerm
    171 N6046117226ef4a859b2b4b8195f8f437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Female
    173 rdf:type schema:DefinedTerm
    174 N654c9652279c4a9791db905c3cbf3d95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name MAP Kinase Signaling System
    176 rdf:type schema:DefinedTerm
    177 N689d1edda361487e9ca27080bc57c97c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Humans
    179 rdf:type schema:DefinedTerm
    180 N6e8efd0fdae64e09aa5572313a05715a schema:issueNumber Suppl 7
    181 rdf:type schema:PublicationIssue
    182 N752c50d1ad4747b1b56003aacd4f9f9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Breast Neoplasms
    184 rdf:type schema:DefinedTerm
    185 N761509d81c4c47e5a2656bb8ddf61279 rdf:first sg:person.01306171752.24
    186 rdf:rest Nc1ce9e5d3e9e4efc81ce669377ca91c7
    187 N7f0175e8fd944abbab5641fabbd0a466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name MicroRNAs
    189 rdf:type schema:DefinedTerm
    190 N9985e1cb59fe48278e0aeec4a8ba5112 rdf:first sg:person.0750031705.37
    191 rdf:rest N761509d81c4c47e5a2656bb8ddf61279
    192 Nb2d6d97d01af4d1baa451983376f2374 rdf:first sg:person.014034650164.22
    193 rdf:rest Ne46e85204013493bb8224961ecf0c5b2
    194 Nbcef929e3e3b4116be9ccd74b7b2d815 schema:name Springer Nature - SN SciGraph project
    195 rdf:type schema:Organization
    196 Nc0eb9579ab484c38b6d66d9250774d8d rdf:first sg:person.0667163425.22
    197 rdf:rest N4957d60f3905497d953e4be54e74cd6d
    198 Nc1a825ab78824bc0b71578ab50defbdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name 5' Untranslated Regions
    200 rdf:type schema:DefinedTerm
    201 Nc1ce9e5d3e9e4efc81ce669377ca91c7 rdf:first sg:person.0636441050.53
    202 rdf:rest Nc0eb9579ab484c38b6d66d9250774d8d
    203 Nd05023947c224cf3b9a0200d8c432c1d schema:name doi
    204 schema:value 10.1186/1471-2164-13-s7-s18
    205 rdf:type schema:PropertyValue
    206 Nd1c17fd45abc4cbb806da681ab8bf69f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name High-Throughput Nucleotide Sequencing
    208 rdf:type schema:DefinedTerm
    209 Ne46e85204013493bb8224961ecf0c5b2 rdf:first sg:person.01135535115.89
    210 rdf:rest Nf43572fac47a4a8285960eb38b203d9b
    211 Ne7d2484cdf0a4e91904100ffce52e3ef schema:name pubmed_id
    212 schema:value 23281739
    213 rdf:type schema:PropertyValue
    214 Nf43572fac47a4a8285960eb38b203d9b rdf:first sg:person.01055514752.24
    215 rdf:rest N4e97c898f2404ed2b42f27e9a467b755
    216 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Medical and Health Sciences
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Oncology and Carcinogenesis
    221 rdf:type schema:DefinedTerm
    222 sg:journal.1023790 schema:issn 1471-2164
    223 schema:name BMC Genomics
    224 schema:publisher Springer Nature
    225 rdf:type schema:Periodical
    226 sg:person.01012741270.15 schema:affiliation grid-institutes:grid.415011.0
    227 schema:familyName Pan
    228 schema:givenName Hung-Wei
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012741270.15
    230 rdf:type schema:Person
    231 sg:person.01055514752.24 schema:affiliation grid-institutes:grid.506939.0
    232 schema:familyName Ho
    233 schema:givenName Meng-Ru
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055514752.24
    235 rdf:type schema:Person
    236 sg:person.01135535115.89 schema:affiliation grid-institutes:grid.506938.1
    237 schema:familyName Li
    238 schema:givenName Sung-Chou
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135535115.89
    240 rdf:type schema:Person
    241 sg:person.01171743352.70 schema:affiliation grid-institutes:grid.412902.c
    242 schema:familyName Tsai
    243 schema:givenName Kuo-Wang
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171743352.70
    245 rdf:type schema:Person
    246 sg:person.01306171752.24 schema:affiliation grid-institutes:grid.482251.8
    247 schema:familyName Hu
    248 schema:givenName Ling-Yueh
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306171752.24
    250 rdf:type schema:Person
    251 sg:person.014034650164.22 schema:affiliation grid-institutes:grid.415011.0
    252 schema:familyName Chang
    253 schema:givenName Hong-Tai
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034650164.22
    255 rdf:type schema:Person
    256 sg:person.0636441050.53 schema:affiliation grid-institutes:grid.415011.0
    257 schema:familyName Yu
    258 schema:givenName Shou-Yu
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636441050.53
    260 rdf:type schema:Person
    261 sg:person.0667163425.22 schema:affiliation grid-institutes:grid.170205.1
    262 schema:familyName Li
    263 schema:givenName Wen-Hsiung
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667163425.22
    265 rdf:type schema:Person
    266 sg:person.0750031705.37 schema:affiliation grid-institutes:grid.415011.0
    267 schema:familyName Ger
    268 schema:givenName Luo-Ping
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750031705.37
    270 rdf:type schema:Person
    271 sg:pub.10.1007/s10549-010-1303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008297332
    272 https://doi.org/10.1007/s10549-010-1303-3
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s10549-011-1424-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020569096
    275 https://doi.org/10.1007/s10549-011-1424-3
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s10549-012-1969-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048364712
    278 https://doi.org/10.1007/s10549-012-1969-9
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s11033-012-1493-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034488585
    281 https://doi.org/10.1007/s11033-012-1493-3
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ng1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037192337
    284 https://doi.org/10.1038/ng1536
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ng1798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011753396
    287 https://doi.org/10.1038/ng1798
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nm.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013306597
    290 https://doi.org/10.1038/nm.2401
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/onc.2011.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022913195
    293 https://doi.org/10.1038/onc.2011.63
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/sj.bjc.6605833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046818587
    296 https://doi.org/10.1038/sj.bjc.6605833
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/sj.onc.1210421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002864504
    299 https://doi.org/10.1038/sj.onc.1210421
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/1471-2105-12-s1-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006835544
    302 https://doi.org/10.1186/1471-2105-12-s1-s9
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/1471-2105-7-s5-s20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008084081
    305 https://doi.org/10.1186/1471-2105-7-s5-s20
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/1471-2164-13-s1-s13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036210359
    308 https://doi.org/10.1186/1471-2164-13-s1-s13
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/1471-2199-10-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046654979
    311 https://doi.org/10.1186/1471-2199-10-12
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1186/1756-9966-29-151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048172862
    314 https://doi.org/10.1186/1756-9966-29-151
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/bcr2839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009101031
    317 https://doi.org/10.1186/bcr2839
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    320 https://doi.org/10.1186/gb-2009-10-3-r25
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1186/gb-2011-12-12-r126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011913309
    323 https://doi.org/10.1186/gb-2011-12-12-r126
    324 rdf:type schema:CreativeWork
    325 grid-institutes:grid.170205.1 schema:alternateName Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
    326 schema:name Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    327 Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
    328 rdf:type schema:Organization
    329 grid-institutes:grid.412902.c schema:alternateName Department of Biotechnology, Tajen University, Taiwan, Republic of China
    330 schema:name Department of Biotechnology, Tajen University, Taiwan, Republic of China
    331 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
    332 rdf:type schema:Organization
    333 grid-institutes:grid.415011.0 schema:alternateName Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
    334 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
    335 schema:name Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
    336 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
    337 Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
    338 rdf:type schema:Organization
    339 grid-institutes:grid.482251.8 schema:alternateName Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    340 schema:name Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    341 rdf:type schema:Organization
    342 grid-institutes:grid.506938.1 schema:alternateName Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    343 schema:name Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    344 rdf:type schema:Organization
    345 grid-institutes:grid.506939.0 schema:alternateName Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    346 schema:name Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...