De novo assembly of highly diverse viral populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Xiao Yang, Patrick Charlebois, Sante Gnerre, Matthew G Coole, Niall J Lennon, Joshua Z Levin, James Qu, Elizabeth M Ryan, Michael C Zody, Matthew R Henn

ABSTRACT

BACKGROUND: Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. RESULTS: We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. CONCLUSIONS: We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research. More... »

PAGES

475

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-13-475

DOI

http://dx.doi.org/10.1186/1471-2164-13-475

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008570077

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22974120


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiao", 
        "id": "sg:person.0645353550.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645353550.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charlebois", 
        "givenName": "Patrick", 
        "id": "sg:person.01152560245.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152560245.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnerre", 
        "givenName": "Sante", 
        "id": "sg:person.0761567341.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761567341.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coole", 
        "givenName": "Matthew G", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lennon", 
        "givenName": "Niall J", 
        "id": "sg:person.01150562060.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150562060.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levin", 
        "givenName": "Joshua Z", 
        "id": "sg:person.01222432021.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222432021.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "James", 
        "id": "sg:person.01212257150.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212257150.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryan", 
        "givenName": "Elizabeth M", 
        "id": "sg:person.0704463537.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704463537.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zody", 
        "givenName": "Michael C", 
        "id": "sg:person.0766220260.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766220260.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henn", 
        "givenName": "Matthew R", 
        "id": "sg:person.016017370577.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017370577.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/jvi.00736-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000940951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.virusres.2004.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003924506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1017351108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004253849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004799497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/vir.0.81015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005664207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.00112-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.78.22.12717-12721.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006667318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008270984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7552(97)00031-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009031912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.171285098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010138766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010292273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089532.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011404279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012556953", 
          "https://doi.org/10.1038/nature08237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012556953", 
          "https://doi.org/10.1038/nature08237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012842242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1390403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014635681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.208902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015075717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015291014", 
          "https://doi.org/10.1038/nature04388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015291014", 
          "https://doi.org/10.1038/nature04388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015291014", 
          "https://doi.org/10.1038/nature04388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015803168", 
          "https://doi.org/10.1038/nbt.1883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.05985-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016200748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2007.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017106640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.06627-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017492465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.1028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017955952", 
          "https://doi.org/10.1038/ng.1028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018999537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899367", 
          "https://doi.org/10.1038/nmeth.1491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899367", 
          "https://doi.org/10.1038/nmeth.1491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1109557.1109607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028232091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1001022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029780975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030783427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.02697-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039223905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.20090378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039286908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1002529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042106355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa073785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045934129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1950.tb00463.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047158404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.074492.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.virol.2012.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052754021"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage.\nRESULTS: We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software.\nCONCLUSIONS: We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-13-475", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2346932", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "De novo assembly of highly diverse viral populations", 
    "pagination": "475", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28d468d2c7c8fb3f55426a430b06fc6e8ee6fd5e6ccb6e10843ab408d4a4b7bd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22974120"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-13-475"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008570077"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-13-475", 
      "https://app.dimensions.ai/details/publication/pub.1008570077"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-13-475"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-475'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-475'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-475'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-475'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      72 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-13-475 schema:about N0ba3b8657aab46a5b4b6874240355664
2 N818506c7560b43f98e3747a23e376333
3 N9c41949df5624de0b78e841d5a108329
4 Nbaad0f7f0d0b4a45b2efbe383cdbc147
5 anzsrc-for:06
6 anzsrc-for:0604
7 schema:author N8fc00c0388464d4e8672aba52e5958a4
8 schema:citation sg:pub.10.1038/nature04388
9 sg:pub.10.1038/nature08237
10 sg:pub.10.1038/nbt.1883
11 sg:pub.10.1038/ng.1028
12 sg:pub.10.1038/nmeth.1491
13 https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
14 https://doi.org/10.1016/j.jpdc.2007.05.014
15 https://doi.org/10.1016/j.virol.2012.01.028
16 https://doi.org/10.1016/j.virusres.2004.11.007
17 https://doi.org/10.1016/s0169-7552(97)00031-7
18 https://doi.org/10.1056/nejmoa073785
19 https://doi.org/10.1073/pnas.1017351108
20 https://doi.org/10.1073/pnas.171285098
21 https://doi.org/10.1084/jem.20090378
22 https://doi.org/10.1093/bib/bbq015
23 https://doi.org/10.1093/bioinformatics/btp373
24 https://doi.org/10.1093/bioinformatics/btq217
25 https://doi.org/10.1093/nar/gks678
26 https://doi.org/10.1093/nar/gks794
27 https://doi.org/10.1099/vir.0.81015-0
28 https://doi.org/10.1101/gr.074492.107
29 https://doi.org/10.1101/gr.089532.108
30 https://doi.org/10.1101/gr.107524.110
31 https://doi.org/10.1101/gr.1390403
32 https://doi.org/10.1101/gr.208902
33 https://doi.org/10.1126/science.287.5461.2196
34 https://doi.org/10.1128/jvi.00112-10
35 https://doi.org/10.1128/jvi.00736-12
36 https://doi.org/10.1128/jvi.02697-10
37 https://doi.org/10.1128/jvi.05985-11
38 https://doi.org/10.1128/jvi.06627-11
39 https://doi.org/10.1128/jvi.78.22.12717-12721.2004
40 https://doi.org/10.1145/1109557.1109607
41 https://doi.org/10.1371/journal.pcbi.1000074
42 https://doi.org/10.1371/journal.pcbi.1001022
43 https://doi.org/10.1371/journal.pcbi.1002417
44 https://doi.org/10.1371/journal.pntd.0001485
45 https://doi.org/10.1371/journal.pone.0013564
46 https://doi.org/10.1371/journal.ppat.1002529
47 schema:datePublished 2012-12
48 schema:datePublishedReg 2012-12-01
49 schema:description BACKGROUND: Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. RESULTS: We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. CONCLUSIONS: We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N0f889ae4364a4c0d8e93cff02ec4c54a
54 N84eaf3d771f84185867eafe9080d6505
55 sg:journal.1023790
56 schema:name De novo assembly of highly diverse viral populations
57 schema:pagination 475
58 schema:productId N22d60e11da6c42289a86b2b3e7881709
59 N2453f764ce1f41cb8581edb17d2507c4
60 N25d137642dda496aaf326e69e0e0ce10
61 N3e6d69f673c1494392d33506232bf55c
62 N6cf4af8d1ef44a6eba60523c2eb988c7
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008570077
64 https://doi.org/10.1186/1471-2164-13-475
65 schema:sdDatePublished 2019-04-10T16:40
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N356efa2a5de0435f9eb0d4bf25a121a0
68 schema:url http://link.springer.com/10.1186%2F1471-2164-13-475
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N08fc8467a3e04099bf7762a6c91b0371 rdf:first N4477a9bbd83d4f4bbaebec33d0816b57
73 rdf:rest N2eadf48c2c8f4efbb151e4147668924a
74 N0ba3b8657aab46a5b4b6874240355664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Software
76 rdf:type schema:DefinedTerm
77 N0f889ae4364a4c0d8e93cff02ec4c54a schema:volumeNumber 13
78 rdf:type schema:PublicationVolume
79 N15bc99db3f0645ab9b37ff8558ec49fc rdf:first sg:person.01212257150.97
80 rdf:rest Ncbbc1a624a5d4c7b9caa28cba3c18c67
81 N22d60e11da6c42289a86b2b3e7881709 schema:name nlm_unique_id
82 schema:value 100965258
83 rdf:type schema:PropertyValue
84 N2453f764ce1f41cb8581edb17d2507c4 schema:name pubmed_id
85 schema:value 22974120
86 rdf:type schema:PropertyValue
87 N25d137642dda496aaf326e69e0e0ce10 schema:name dimensions_id
88 schema:value pub.1008570077
89 rdf:type schema:PropertyValue
90 N2eadf48c2c8f4efbb151e4147668924a rdf:first sg:person.01150562060.69
91 rdf:rest Ncbc1add0359b4b1e99ec053b32d8c768
92 N356efa2a5de0435f9eb0d4bf25a121a0 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N3e6d69f673c1494392d33506232bf55c schema:name doi
95 schema:value 10.1186/1471-2164-13-475
96 rdf:type schema:PropertyValue
97 N40c918938fea4943bef42b667908fa58 rdf:first sg:person.01152560245.26
98 rdf:rest Nc5cef0363dd14c63b550916a4822b0fe
99 N4477a9bbd83d4f4bbaebec33d0816b57 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
100 schema:familyName Coole
101 schema:givenName Matthew G
102 rdf:type schema:Person
103 N4dc63df5e6b74153b9982cb984bdc14f rdf:first sg:person.0766220260.33
104 rdf:rest N6ca3821d629f4d2a832c51684cecff12
105 N6ca3821d629f4d2a832c51684cecff12 rdf:first sg:person.016017370577.59
106 rdf:rest rdf:nil
107 N6cf4af8d1ef44a6eba60523c2eb988c7 schema:name readcube_id
108 schema:value 28d468d2c7c8fb3f55426a430b06fc6e8ee6fd5e6ccb6e10843ab408d4a4b7bd
109 rdf:type schema:PropertyValue
110 N818506c7560b43f98e3747a23e376333 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Algorithms
112 rdf:type schema:DefinedTerm
113 N84eaf3d771f84185867eafe9080d6505 schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 N8fc00c0388464d4e8672aba52e5958a4 rdf:first sg:person.0645353550.63
116 rdf:rest N40c918938fea4943bef42b667908fa58
117 N9c41949df5624de0b78e841d5a108329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genome, Viral
119 rdf:type schema:DefinedTerm
120 Nbaad0f7f0d0b4a45b2efbe383cdbc147 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Computational Biology
122 rdf:type schema:DefinedTerm
123 Nc5cef0363dd14c63b550916a4822b0fe rdf:first sg:person.0761567341.00
124 rdf:rest N08fc8467a3e04099bf7762a6c91b0371
125 Ncbbc1a624a5d4c7b9caa28cba3c18c67 rdf:first sg:person.0704463537.10
126 rdf:rest N4dc63df5e6b74153b9982cb984bdc14f
127 Ncbc1add0359b4b1e99ec053b32d8c768 rdf:first sg:person.01222432021.01
128 rdf:rest N15bc99db3f0645ab9b37ff8558ec49fc
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
133 schema:name Genetics
134 rdf:type schema:DefinedTerm
135 sg:grant.2346932 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-13-475
136 rdf:type schema:MonetaryGrant
137 sg:journal.1023790 schema:issn 1471-2164
138 schema:name BMC Genomics
139 rdf:type schema:Periodical
140 sg:person.01150562060.69 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
141 schema:familyName Lennon
142 schema:givenName Niall J
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150562060.69
144 rdf:type schema:Person
145 sg:person.01152560245.26 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
146 schema:familyName Charlebois
147 schema:givenName Patrick
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152560245.26
149 rdf:type schema:Person
150 sg:person.01212257150.97 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
151 schema:familyName Qu
152 schema:givenName James
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212257150.97
154 rdf:type schema:Person
155 sg:person.01222432021.01 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
156 schema:familyName Levin
157 schema:givenName Joshua Z
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222432021.01
159 rdf:type schema:Person
160 sg:person.016017370577.59 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
161 schema:familyName Henn
162 schema:givenName Matthew R
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017370577.59
164 rdf:type schema:Person
165 sg:person.0645353550.63 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
166 schema:familyName Yang
167 schema:givenName Xiao
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645353550.63
169 rdf:type schema:Person
170 sg:person.0704463537.10 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
171 schema:familyName Ryan
172 schema:givenName Elizabeth M
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704463537.10
174 rdf:type schema:Person
175 sg:person.0761567341.00 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
176 schema:familyName Gnerre
177 schema:givenName Sante
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761567341.00
179 rdf:type schema:Person
180 sg:person.0766220260.33 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
181 schema:familyName Zody
182 schema:givenName Michael C
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766220260.33
184 rdf:type schema:Person
185 sg:pub.10.1038/nature04388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015291014
186 https://doi.org/10.1038/nature04388
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature08237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012556953
189 https://doi.org/10.1038/nature08237
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
192 https://doi.org/10.1038/nbt.1883
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ng.1028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017955952
195 https://doi.org/10.1038/ng.1028
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nmeth.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899367
198 https://doi.org/10.1038/nmeth.1491
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/j.1538-7305.1950.tb00463.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047158404
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jpdc.2007.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017106640
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.virol.2012.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052754021
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.virusres.2004.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003924506
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0169-7552(97)00031-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009031912
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1056/nejmoa073785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045934129
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.1017351108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004253849
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1073/pnas.171285098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010138766
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1084/jem.20090378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039286908
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bib/bbq015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203929
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/btp373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008270984
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/btq217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018999537
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gks678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899672
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gks794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004799497
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1099/vir.0.81015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005664207
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1101/gr.074492.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720574
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1101/gr.089532.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011404279
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1101/gr.1390403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014635681
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1101/gr.208902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015075717
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.287.5461.2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030783427
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1128/jvi.00112-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879472
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1128/jvi.00736-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000127742
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1128/jvi.02697-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039223905
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1128/jvi.05985-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016200748
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/jvi.06627-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017492465
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/jvi.78.22.12717-12721.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006667318
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1145/1109557.1109607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028232091
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pcbi.1000074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010292273
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pcbi.1001022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029780975
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pcbi.1002417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610784
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pntd.0001485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012842242
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pone.0013564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000940951
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.ppat.1002529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042106355
267 rdf:type schema:CreativeWork
268 https://www.grid.ac/institutes/grid.66859.34 schema:alternateName Broad Institute
269 schema:name The Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...