Metabolic classification of microbial genomes using functional probes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Chi-Ching Lee, Wei-Cheng Lo, Szu-Ming Lai, Yi-Ping Phoebe Chen, Chuan Yi Tang, Ping-Chiang Lyu

ABSTRACT

BACKGROUND: Microorganisms able to grow under artificial culture conditions comprise only a small proportion of the biosphere's total microbial community. Until recently, scientists have been unable to perform thorough analyses of difficult-to-culture microorganisms due to limitations in sequencing technology. As modern techniques have dramatically increased sequencing rates and rapidly expanded the number of sequenced genomes, in addition to traditional taxonomic classifications which focus on the evolutionary relationships of organisms, classifications of the genomes based on alternative points of view may help advance our understanding of the delicate relationships of organisms. RESULTS: We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes. CONCLUSIONS: Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms. More... »

PAGES

157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-13-157

DOI

http://dx.doi.org/10.1186/1471-2164-13-157

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026416304

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22537274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer, Horizontal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan", 
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Chi-Ching", 
        "id": "sg:person.01157143141.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157143141.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chiao Tung University", 
          "id": "https://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lo", 
        "givenName": "Wei-Cheng", 
        "id": "sg:person.0756737117.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756737117.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Szu-Ming", 
        "id": "sg:person.01240171515.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240171515.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "La Trobe University", 
          "id": "https://www.grid.ac/institutes/grid.1018.8", 
          "name": [
            "Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yi-Ping Phoebe", 
        "id": "sg:person.01305741074.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305741074.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.254145.3", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan", 
            "Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan", 
            "Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chuan Yi", 
        "id": "sg:person.01312526135.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.254145.3", 
          "name": [
            "Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan", 
            "Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan", 
            "Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyu", 
        "givenName": "Ping-Chiang", 
        "id": "sg:person.01022460340.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022460340.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0168-1605(96)01233-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2583.2009.00942.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000894714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2583.2009.00942.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000894714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0611-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001841887", 
          "https://doi.org/10.1007/978-1-4757-0611-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s1-s27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003055195", 
          "https://doi.org/10.1186/1471-2105-12-s1-s27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-9-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006177594", 
          "https://doi.org/10.1186/1471-2148-9-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006761320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006761320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008035809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605127103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008547462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800125.804056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008548918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.9.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010319397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-8-272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010623344", 
          "https://doi.org/10.1186/1471-2148-8-272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(03)00038-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012138091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(03)00038-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012138091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013357118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013912470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.11.5088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014771180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200900059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014950307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35024074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016095729", 
          "https://doi.org/10.1038/35024074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35024074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016095729", 
          "https://doi.org/10.1038/35024074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.12.4576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-003-2493-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020407557", 
          "https://doi.org/10.1007/s00239-003-2493-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5389.754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020932517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002390010178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056177", 
          "https://doi.org/10.1007/s002390010178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bc20070137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022259156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02703681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029589471", 
          "https://doi.org/10.1007/bf02703681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02703681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029589471", 
          "https://doi.org/10.1007/bf02703681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-10-258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030896493", 
          "https://doi.org/10.1186/1471-2180-10-258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.68.4.745-770.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032104665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2004.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032373395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034135878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2008.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035653100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.6.808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035806091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.10.6319-6324.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035903939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020316706928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038083773", 
          "https://doi.org/10.1023/a:1020316706928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038696050", 
          "https://doi.org/10.1038/5052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038696050", 
          "https://doi.org/10.1038/5052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-437x(98)80035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040058712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1013465108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.11.2369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041672956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/90129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537539", 
          "https://doi.org/10.1038/90129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/90129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537539", 
          "https://doi.org/10.1038/90129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.2.838-845.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043454832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1123061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043495787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2007.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045900551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046016888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00246-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048894991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2008.00146.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049061571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051817716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0806162105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053143105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr101086a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056292415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.2008/000893-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060386241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074949625", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077282387", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078837863", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081104609", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082959838", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Microorganisms able to grow under artificial culture conditions comprise only a small proportion of the biosphere's total microbial community. Until recently, scientists have been unable to perform thorough analyses of difficult-to-culture microorganisms due to limitations in sequencing technology. As modern techniques have dramatically increased sequencing rates and rapidly expanded the number of sequenced genomes, in addition to traditional taxonomic classifications which focus on the evolutionary relationships of organisms, classifications of the genomes based on alternative points of view may help advance our understanding of the delicate relationships of organisms.\nRESULTS: We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes.\nCONCLUSIONS: Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-13-157", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Metabolic classification of microbial genomes using functional probes", 
    "pagination": "157", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7dd8720ab7700b5a9088033a9935e617def15328ca78149bd6a6cfa21b77f3f3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22537274"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-13-157"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026416304"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-13-157", 
      "https://app.dimensions.ai/details/publication/pub.1026416304"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-13-157"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-157'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-157'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-157'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-13-157'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      21 PREDICATES      86 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-13-157 schema:about N33bcbfa9a72b41fc8f9a407f6a3765b7
2 N45880b314f584ae1ac61921885f871fe
3 N6c6d2eeaf42e41da8cb1980a1de3593d
4 N721e9e9de9cc40819c9d43b704567296
5 Nac5c3dae3dc74b48b1eb400497af2ddc
6 anzsrc-for:06
7 anzsrc-for:0605
8 schema:author N982c4a37d50e41eaa3dc6951d09857dd
9 schema:citation sg:pub.10.1007/978-1-4757-0611-6_1
10 sg:pub.10.1007/bf02703681
11 sg:pub.10.1007/s00239-003-2493-7
12 sg:pub.10.1007/s002390010178
13 sg:pub.10.1023/a:1020316706928
14 sg:pub.10.1038/35024074
15 sg:pub.10.1038/5052
16 sg:pub.10.1038/90129
17 sg:pub.10.1186/1471-2105-12-s1-s27
18 sg:pub.10.1186/1471-2148-8-272
19 sg:pub.10.1186/1471-2148-9-9
20 sg:pub.10.1186/1471-2180-10-258
21 https://app.dimensions.ai/details/publication/pub.1074949625
22 https://app.dimensions.ai/details/publication/pub.1077282387
23 https://app.dimensions.ai/details/publication/pub.1078837863
24 https://app.dimensions.ai/details/publication/pub.1081104609
25 https://app.dimensions.ai/details/publication/pub.1082959838
26 https://doi.org/10.1002/elps.200900059
27 https://doi.org/10.1016/j.copbio.2008.10.010
28 https://doi.org/10.1016/j.mib.2007.08.004
29 https://doi.org/10.1016/j.mimet.2004.04.007
30 https://doi.org/10.1016/s0167-7012(03)00038-1
31 https://doi.org/10.1016/s0168-1605(96)01233-0
32 https://doi.org/10.1016/s0959-437x(98)80035-x
33 https://doi.org/10.1021/pr101086a
34 https://doi.org/10.1042/bc20070137
35 https://doi.org/10.1073/pnas.0605127103
36 https://doi.org/10.1073/pnas.0806162105
37 https://doi.org/10.1073/pnas.1013465108
38 https://doi.org/10.1073/pnas.74.11.5088
39 https://doi.org/10.1073/pnas.87.12.4576
40 https://doi.org/10.1093/bioinformatics/15.9.773
41 https://doi.org/10.1093/bioinformatics/btl307
42 https://doi.org/10.1093/bioinformatics/btn503
43 https://doi.org/10.1093/nar/27.11.2369
44 https://doi.org/10.1093/nar/29.1.126
45 https://doi.org/10.1093/nar/gkg004
46 https://doi.org/10.1093/nar/gkl842
47 https://doi.org/10.1093/nar/gkq1189
48 https://doi.org/10.1093/nar/gkq520
49 https://doi.org/10.1099/ijs.0.2008/000893-0
50 https://doi.org/10.1101/gr.10.6.808
51 https://doi.org/10.1111/j.1365-2583.2009.00942.x
52 https://doi.org/10.1111/j.1574-6976.2008.00146.x
53 https://doi.org/10.1126/science.1123061
54 https://doi.org/10.1126/science.282.5389.754
55 https://doi.org/10.1128/aem.00246-06
56 https://doi.org/10.1128/aem.68.2.838-845.2002
57 https://doi.org/10.1128/aem.71.10.6319-6324.2005
58 https://doi.org/10.1128/mmbr.68.4.745-770.2004
59 https://doi.org/10.1145/800125.804056
60 https://doi.org/10.1371/journal.pone.0013968
61 schema:datePublished 2012-12
62 schema:datePublishedReg 2012-12-01
63 schema:description BACKGROUND: Microorganisms able to grow under artificial culture conditions comprise only a small proportion of the biosphere's total microbial community. Until recently, scientists have been unable to perform thorough analyses of difficult-to-culture microorganisms due to limitations in sequencing technology. As modern techniques have dramatically increased sequencing rates and rapidly expanded the number of sequenced genomes, in addition to traditional taxonomic classifications which focus on the evolutionary relationships of organisms, classifications of the genomes based on alternative points of view may help advance our understanding of the delicate relationships of organisms. RESULTS: We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes. CONCLUSIONS: Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree true
67 schema:isPartOf N63adab86c6ab4aa4b12d3e10cd148486
68 Nf32126f1f1bc424989ea046cf019df04
69 sg:journal.1023790
70 schema:name Metabolic classification of microbial genomes using functional probes
71 schema:pagination 157
72 schema:productId N372601e783004dec8a67e890e8051a50
73 N570e42f2c99d4fc9b1998e6086fa4942
74 Nc59188cf90d54ceaa276ecd8b35f4820
75 Ne221f446d4a94d06bff911023fb17f85
76 Nf7cb2e523f0d4c50a4ee0d0759ed6268
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026416304
78 https://doi.org/10.1186/1471-2164-13-157
79 schema:sdDatePublished 2019-04-10T16:40
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N78ca1fdb85a64bdfaf1dd461f0239142
82 schema:url http://link.springer.com/10.1186%2F1471-2164-13-157
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N33bcbfa9a72b41fc8f9a407f6a3765b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Phylogeny
88 rdf:type schema:DefinedTerm
89 N372601e783004dec8a67e890e8051a50 schema:name pubmed_id
90 schema:value 22537274
91 rdf:type schema:PropertyValue
92 N4199fbc3fd454020bb48aca0bfeae37b rdf:first sg:person.0756737117.44
93 rdf:rest N53e9980356b643b9b84c64284368109a
94 N45880b314f584ae1ac61921885f871fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Bacteria
96 rdf:type schema:DefinedTerm
97 N53e9980356b643b9b84c64284368109a rdf:first sg:person.01240171515.65
98 rdf:rest Ne77b092674054127b0b9fdbadacb3521
99 N570e42f2c99d4fc9b1998e6086fa4942 schema:name dimensions_id
100 schema:value pub.1026416304
101 rdf:type schema:PropertyValue
102 N63adab86c6ab4aa4b12d3e10cd148486 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N6c6d2eeaf42e41da8cb1980a1de3593d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Gene Transfer, Horizontal
106 rdf:type schema:DefinedTerm
107 N721e9e9de9cc40819c9d43b704567296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Proteomics
109 rdf:type schema:DefinedTerm
110 N78ca1fdb85a64bdfaf1dd461f0239142 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N982c4a37d50e41eaa3dc6951d09857dd rdf:first sg:person.01157143141.10
113 rdf:rest N4199fbc3fd454020bb48aca0bfeae37b
114 N9c437b4d3db44195962eb139f6737c37 rdf:first sg:person.01022460340.89
115 rdf:rest rdf:nil
116 Nac5c3dae3dc74b48b1eb400497af2ddc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Genomics
118 rdf:type schema:DefinedTerm
119 Nc59188cf90d54ceaa276ecd8b35f4820 schema:name readcube_id
120 schema:value 7dd8720ab7700b5a9088033a9935e617def15328ca78149bd6a6cfa21b77f3f3
121 rdf:type schema:PropertyValue
122 Ne221f446d4a94d06bff911023fb17f85 schema:name doi
123 schema:value 10.1186/1471-2164-13-157
124 rdf:type schema:PropertyValue
125 Ne77b092674054127b0b9fdbadacb3521 rdf:first sg:person.01305741074.96
126 rdf:rest Nf843768b00a54127903f281cdcacb01f
127 Nf32126f1f1bc424989ea046cf019df04 schema:volumeNumber 13
128 rdf:type schema:PublicationVolume
129 Nf7cb2e523f0d4c50a4ee0d0759ed6268 schema:name nlm_unique_id
130 schema:value 100965258
131 rdf:type schema:PropertyValue
132 Nf843768b00a54127903f281cdcacb01f rdf:first sg:person.01312526135.27
133 rdf:rest N9c437b4d3db44195962eb139f6737c37
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
138 schema:name Microbiology
139 rdf:type schema:DefinedTerm
140 sg:journal.1023790 schema:issn 1471-2164
141 schema:name BMC Genomics
142 rdf:type schema:Periodical
143 sg:person.01022460340.89 schema:affiliation https://www.grid.ac/institutes/grid.254145.3
144 schema:familyName Lyu
145 schema:givenName Ping-Chiang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022460340.89
147 rdf:type schema:Person
148 sg:person.01157143141.10 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
149 schema:familyName Lee
150 schema:givenName Chi-Ching
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157143141.10
152 rdf:type schema:Person
153 sg:person.01240171515.65 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
154 schema:familyName Lai
155 schema:givenName Szu-Ming
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240171515.65
157 rdf:type schema:Person
158 sg:person.01305741074.96 schema:affiliation https://www.grid.ac/institutes/grid.1018.8
159 schema:familyName Chen
160 schema:givenName Yi-Ping Phoebe
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305741074.96
162 rdf:type schema:Person
163 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.254145.3
164 schema:familyName Tang
165 schema:givenName Chuan Yi
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
167 rdf:type schema:Person
168 sg:person.0756737117.44 schema:affiliation https://www.grid.ac/institutes/grid.260539.b
169 schema:familyName Lo
170 schema:givenName Wei-Cheng
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756737117.44
172 rdf:type schema:Person
173 sg:pub.10.1007/978-1-4757-0611-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001841887
174 https://doi.org/10.1007/978-1-4757-0611-6_1
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf02703681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029589471
177 https://doi.org/10.1007/bf02703681
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00239-003-2493-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020407557
180 https://doi.org/10.1007/s00239-003-2493-7
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s002390010178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021056177
183 https://doi.org/10.1007/s002390010178
184 rdf:type schema:CreativeWork
185 sg:pub.10.1023/a:1020316706928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038083773
186 https://doi.org/10.1023/a:1020316706928
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/35024074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016095729
189 https://doi.org/10.1038/35024074
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/5052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038696050
192 https://doi.org/10.1038/5052
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/90129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537539
195 https://doi.org/10.1038/90129
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2105-12-s1-s27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003055195
198 https://doi.org/10.1186/1471-2105-12-s1-s27
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2148-8-272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010623344
201 https://doi.org/10.1186/1471-2148-8-272
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2148-9-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006177594
204 https://doi.org/10.1186/1471-2148-9-9
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2180-10-258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030896493
207 https://doi.org/10.1186/1471-2180-10-258
208 rdf:type schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1074949625 schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1077282387 schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1078837863 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1081104609 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1082959838 schema:CreativeWork
214 https://doi.org/10.1002/elps.200900059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014950307
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.copbio.2008.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035653100
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.mib.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045900551
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.mimet.2004.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032373395
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0167-7012(03)00038-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012138091
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0168-1605(96)01233-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587692
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0959-437x(98)80035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040058712
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/pr101086a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056292415
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1042/bc20070137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022259156
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0605127103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008547462
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.0806162105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053143105
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.1013465108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765871
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.74.11.5088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014771180
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.87.12.4576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018027137
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/15.9.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010319397
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/btl307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004543138
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/bioinformatics/btn503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046016888
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/27.11.2369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041672956
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/29.1.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034135878
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/gkg004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013357118
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/nar/gkl842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035809
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/nar/gkq1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013912470
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/nar/gkq520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761320
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1099/ijs.0.2008/000893-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060386241
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1101/gr.10.6.808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035806091
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1111/j.1365-2583.2009.00942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000894714
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1111/j.1574-6976.2008.00146.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049061571
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1126/science.1123061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043495787
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1126/science.282.5389.754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020932517
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1128/aem.00246-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048894991
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1128/aem.68.2.838-845.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043454832
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1128/aem.71.10.6319-6324.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035903939
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1128/mmbr.68.4.745-770.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032104665
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1145/800125.804056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008548918
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1371/journal.pone.0013968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051817716
283 rdf:type schema:CreativeWork
284 https://www.grid.ac/institutes/grid.1018.8 schema:alternateName La Trobe University
285 schema:name Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.254145.3 schema:alternateName China Medical University
288 schema:name Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan
289 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
290 Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
291 Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan
292 Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.260539.b schema:alternateName National Chiao Tung University
295 schema:name Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
298 schema:name Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
299 Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...