Ψ-RA: a parallel sparse index for genomic read alignment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

M Oğuzhan Külekci, Wing-Kai Hon, Rahul Shah, Jeffrey Scott Vitter, Bojian Xu

ABSTRACT

BACKGROUND: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species share the majority of their genomes, short reads alignment provides an alternative and much more efficient way to sequence the genome of a particular individual than does direct sequencing. Among many strategies proposed for this alignment process, indexing the reference genome and short read searching over the index is a dominant technique. Our goal is to design a space-efficient indexing structure with fast searching capability to catch the massive short reads produced by the next generation high-throughput DNA sequencing technology. RESULTS: We concentrate on indexing DNA sequences via sparse suffix arrays (SSAs) and propose a new short read aligner named Ψ-RA (PSI-RA: parallel sparse index read aligner). The motivation in using SSAs is the ability to trade memory against time. It is possible to fine tune the space consumption of the index based on the available memory of the machine and the minimum length of the arriving pattern queries. Although SSAs have been studied before for exact matching of short reads, an elegant way of approximate matching capability was missing. We provide this by defining the rightmost mismatch criteria that prioritize the errors towards the end of the reads, where errors are more probable. Ψ-RA supports any number of mismatches in aligning reads. We give comparisons with some of the well-known short read aligners, and show that indexing a genome with SSA is a good alternative to the Burrows-Wheeler transform or seed-based solutions. CONCLUSIONS: Ψ-RA is expected to serve as a valuable tool in the alignment of short reads generated by the next generation high-throughput sequencing technology. Ψ-RA is very fast in exact matching and also supports rightmost approximate matching. The SSA structure that Ψ-RA is built on naturally incorporates the modern multicore architecture and thus further speed-up can be gained. All the information, including the source code of Ψ-RA, can be downloaded at: http://www.busillis.com/o_kulekci/PSIRA.zip. More... »

PAGES

s7

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-12-s2-s7

DOI

http://dx.doi.org/10.1186/1471-2164-12-s2-s7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000837152

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21989248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "National Research Institute of Electronics & Cryptology, 41470, Gebze, Kocaeli, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u011fuzhan K\u00fclekci", 
        "givenName": "M", 
        "id": "sg:person.011026615332.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011026615332.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hon", 
        "givenName": "Wing-Kai", 
        "id": "sg:person.07456324600.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456324600.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Louisiana State University", 
          "id": "https://www.grid.ac/institutes/grid.64337.35", 
          "name": [
            "Department of Computer Science, Louisiana State University, 70810, Baton Rouge, LA, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Rahul", 
        "id": "sg:person.016536034313.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536034313.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kansas", 
          "id": "https://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Department of Electrical Engineering and Computer Science, The University of Kansas, 66045, Lawrence, KS, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott Vitter", 
        "givenName": "Jeffrey", 
        "id": "sg:person.0613677314.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613677314.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kansas", 
          "id": "https://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Department of Electrical Engineering and Computer Science, The University of Kansas, 66045, Lawrence, KS, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Bojian", 
        "id": "sg:person.01205767644.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205767644.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005954516", 
          "https://doi.org/10.1038/nbt1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012266713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1216370.1216372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028544032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13509-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029367197", 
          "https://doi.org/10.1007/978-3-642-13509-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13509-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029367197", 
          "https://doi.org/10.1007/978-3-642-13509-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044211863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04241-6_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047647130", 
          "https://doi.org/10.1007/978-3-642-04241-6_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050712946", 
          "https://doi.org/10.1038/nmeth.1376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050712946", 
          "https://doi.org/10.1038/nmeth.1376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052838811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539702402354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dcc.2009.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093332470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.2000.892127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093824115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dcc.2008.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095757483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species share the majority of their genomes, short reads alignment provides an alternative and much more efficient way to sequence the genome of a particular individual than does direct sequencing. Among many strategies proposed for this alignment process, indexing the reference genome and short read searching over the index is a dominant technique. Our goal is to design a space-efficient indexing structure with fast searching capability to catch the massive short reads produced by the next generation high-throughput DNA sequencing technology.\nRESULTS: We concentrate on indexing DNA sequences via sparse suffix arrays (SSAs) and propose a new short read aligner named \u03a8-RA (PSI-RA: parallel sparse index read aligner). The motivation in using SSAs is the ability to trade memory against time. It is possible to fine tune the space consumption of the index based on the available memory of the machine and the minimum length of the arriving pattern queries. Although SSAs have been studied before for exact matching of short reads, an elegant way of approximate matching capability was missing. We provide this by defining the rightmost mismatch criteria that prioritize the errors towards the end of the reads, where errors are more probable. \u03a8-RA supports any number of mismatches in aligning reads. We give comparisons with some of the well-known short read aligners, and show that indexing a genome with SSA is a good alternative to the Burrows-Wheeler transform or seed-based solutions.\nCONCLUSIONS: \u03a8-RA is expected to serve as a valuable tool in the alignment of short reads generated by the next generation high-throughput sequencing technology. \u03a8-RA is very fast in exact matching and also supports rightmost approximate matching. The SSA structure that \u03a8-RA is built on naturally incorporates the modern multicore architecture and thus further speed-up can be gained. All the information, including the source code of \u03a8-RA, can be downloaded at: http://www.busillis.com/o_kulekci/PSIRA.zip.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-12-s2-s7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3115537", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3069926", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "\u03a8-RA: a parallel sparse index for genomic read alignment", 
    "pagination": "s7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03fcc307ee646aeeeff70aa90a7db1fb03201da2c8cb40a4588be9b8c37c3e6c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21989248"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-12-s2-s7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000837152"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-12-s2-s7", 
      "https://app.dimensions.ai/details/publication/pub.1000837152"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-12-S2-S7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-s2-s7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-s2-s7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-s2-s7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-s2-s7'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      56 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-12-s2-s7 schema:about N1ff02e2c8594478b9444d9f424aed706
2 N3c442bafbe344b65ad58380f0137173a
3 N4ab83403f561477aae4b65bd37822ede
4 N6273fab13ece46da87a1975e4fe59cad
5 N6ccb5728edd84ad28c32b8c56713ec8d
6 N83be43c7788045dea0a89f68c09ed7bd
7 N95ee762898b146b58464165390b82c75
8 Ncbb77db241314f9c9615b3156354179d
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author Ne609eb0c6f684972964d089b8fbe7463
12 schema:citation sg:pub.10.1007/978-3-642-04241-6_21
13 sg:pub.10.1007/978-3-642-13509-5_24
14 sg:pub.10.1038/nbt1486
15 sg:pub.10.1038/ng.437
16 sg:pub.10.1038/nmeth.1376
17 sg:pub.10.1038/nrg2626
18 sg:pub.10.1186/gb-2009-10-3-r25
19 https://doi.org/10.1016/j.ygeno.2010.03.001
20 https://doi.org/10.1093/bib/bbq015
21 https://doi.org/10.1093/bioinformatics/btn025
22 https://doi.org/10.1093/bioinformatics/btp275
23 https://doi.org/10.1093/bioinformatics/btp324
24 https://doi.org/10.1093/bioinformatics/btp336
25 https://doi.org/10.1093/bioinformatics/btp486
26 https://doi.org/10.1109/dcc.2008.67
27 https://doi.org/10.1109/dcc.2009.42
28 https://doi.org/10.1109/sfcs.2000.892127
29 https://doi.org/10.1137/s0097539702402354
30 https://doi.org/10.1145/1216370.1216372
31 schema:datePublished 2011-12
32 schema:datePublishedReg 2011-12-01
33 schema:description BACKGROUND: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species share the majority of their genomes, short reads alignment provides an alternative and much more efficient way to sequence the genome of a particular individual than does direct sequencing. Among many strategies proposed for this alignment process, indexing the reference genome and short read searching over the index is a dominant technique. Our goal is to design a space-efficient indexing structure with fast searching capability to catch the massive short reads produced by the next generation high-throughput DNA sequencing technology. RESULTS: We concentrate on indexing DNA sequences via sparse suffix arrays (SSAs) and propose a new short read aligner named Ψ-RA (PSI-RA: parallel sparse index read aligner). The motivation in using SSAs is the ability to trade memory against time. It is possible to fine tune the space consumption of the index based on the available memory of the machine and the minimum length of the arriving pattern queries. Although SSAs have been studied before for exact matching of short reads, an elegant way of approximate matching capability was missing. We provide this by defining the rightmost mismatch criteria that prioritize the errors towards the end of the reads, where errors are more probable. Ψ-RA supports any number of mismatches in aligning reads. We give comparisons with some of the well-known short read aligners, and show that indexing a genome with SSA is a good alternative to the Burrows-Wheeler transform or seed-based solutions. CONCLUSIONS: Ψ-RA is expected to serve as a valuable tool in the alignment of short reads generated by the next generation high-throughput sequencing technology. Ψ-RA is very fast in exact matching and also supports rightmost approximate matching. The SSA structure that Ψ-RA is built on naturally incorporates the modern multicore architecture and thus further speed-up can be gained. All the information, including the source code of Ψ-RA, can be downloaded at: http://www.busillis.com/o_kulekci/PSIRA.zip.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N02cd9f0bec5e4a27b9692ef5eabd4bcd
38 N7a37cd781ef746f596feb72cd57940a1
39 sg:journal.1023790
40 schema:name Ψ-RA: a parallel sparse index for genomic read alignment
41 schema:pagination s7
42 schema:productId N21159441f5b743fe8bb0157ad6eedc2f
43 N28d13f90198a4a3fac54d827feab77b3
44 N2a664faebbdb4f4f9564447f91fd35fa
45 N56c38c2c645f42b6b9bec8e5b339a1b1
46 Nbcbb48190ae841459396578c2a96e1d2
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000837152
48 https://doi.org/10.1186/1471-2164-12-s2-s7
49 schema:sdDatePublished 2019-04-10T14:07
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nddb9bec62252402b97e2928b4a8d8761
52 schema:url http://link.springer.com/10.1186%2F1471-2164-12-S2-S7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N02cd9f0bec5e4a27b9692ef5eabd4bcd schema:issueNumber Suppl 2
57 rdf:type schema:PublicationIssue
58 N1ff02e2c8594478b9444d9f424aed706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Software
60 rdf:type schema:DefinedTerm
61 N21159441f5b743fe8bb0157ad6eedc2f schema:name readcube_id
62 schema:value 03fcc307ee646aeeeff70aa90a7db1fb03201da2c8cb40a4588be9b8c37c3e6c
63 rdf:type schema:PropertyValue
64 N28d13f90198a4a3fac54d827feab77b3 schema:name pubmed_id
65 schema:value 21989248
66 rdf:type schema:PropertyValue
67 N2a664faebbdb4f4f9564447f91fd35fa schema:name nlm_unique_id
68 schema:value 100965258
69 rdf:type schema:PropertyValue
70 N39405e9e11834b37894040544d91ab12 rdf:first sg:person.01205767644.44
71 rdf:rest rdf:nil
72 N3c442bafbe344b65ad58380f0137173a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Sequence Analysis, DNA
74 rdf:type schema:DefinedTerm
75 N4ab83403f561477aae4b65bd37822ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Genomics
77 rdf:type schema:DefinedTerm
78 N56c38c2c645f42b6b9bec8e5b339a1b1 schema:name dimensions_id
79 schema:value pub.1000837152
80 rdf:type schema:PropertyValue
81 N5c73e05e4eea49598dc6d2f2a2c2ac2d schema:name National Research Institute of Electronics & Cryptology, 41470, Gebze, Kocaeli, Turkey
82 rdf:type schema:Organization
83 N6273fab13ece46da87a1975e4fe59cad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Algorithms
85 rdf:type schema:DefinedTerm
86 N6ccb5728edd84ad28c32b8c56713ec8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sequence Alignment
88 rdf:type schema:DefinedTerm
89 N7a37cd781ef746f596feb72cd57940a1 schema:volumeNumber 12
90 rdf:type schema:PublicationVolume
91 N828f3cbb9a174939847821b1bbaff586 rdf:first sg:person.0613677314.28
92 rdf:rest N39405e9e11834b37894040544d91ab12
93 N83be43c7788045dea0a89f68c09ed7bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name High-Throughput Nucleotide Sequencing
95 rdf:type schema:DefinedTerm
96 N8c6ca37c02104ffeb63891154b0cfb40 rdf:first sg:person.07456324600.70
97 rdf:rest Na233dd850a034eb892abcc0b6a1daa6c
98 N95ee762898b146b58464165390b82c75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Genome, Human
100 rdf:type schema:DefinedTerm
101 Na233dd850a034eb892abcc0b6a1daa6c rdf:first sg:person.016536034313.19
102 rdf:rest N828f3cbb9a174939847821b1bbaff586
103 Nbcbb48190ae841459396578c2a96e1d2 schema:name doi
104 schema:value 10.1186/1471-2164-12-s2-s7
105 rdf:type schema:PropertyValue
106 Ncbb77db241314f9c9615b3156354179d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 Nddb9bec62252402b97e2928b4a8d8761 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Ne609eb0c6f684972964d089b8fbe7463 rdf:first sg:person.011026615332.33
112 rdf:rest N8c6ca37c02104ffeb63891154b0cfb40
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:grant.3069926 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-s2-s7
120 rdf:type schema:MonetaryGrant
121 sg:grant.3115537 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-s2-s7
122 rdf:type schema:MonetaryGrant
123 sg:journal.1023790 schema:issn 1471-2164
124 schema:name BMC Genomics
125 rdf:type schema:Periodical
126 sg:person.011026615332.33 schema:affiliation N5c73e05e4eea49598dc6d2f2a2c2ac2d
127 schema:familyName Oğuzhan Külekci
128 schema:givenName M
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011026615332.33
130 rdf:type schema:Person
131 sg:person.01205767644.44 schema:affiliation https://www.grid.ac/institutes/grid.266515.3
132 schema:familyName Xu
133 schema:givenName Bojian
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205767644.44
135 rdf:type schema:Person
136 sg:person.016536034313.19 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
137 schema:familyName Shah
138 schema:givenName Rahul
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536034313.19
140 rdf:type schema:Person
141 sg:person.0613677314.28 schema:affiliation https://www.grid.ac/institutes/grid.266515.3
142 schema:familyName Scott Vitter
143 schema:givenName Jeffrey
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613677314.28
145 rdf:type schema:Person
146 sg:person.07456324600.70 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
147 schema:familyName Hon
148 schema:givenName Wing-Kai
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456324600.70
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-642-04241-6_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047647130
152 https://doi.org/10.1007/978-3-642-04241-6_21
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-642-13509-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029367197
155 https://doi.org/10.1007/978-3-642-13509-5_24
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
158 https://doi.org/10.1038/nbt1486
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989827
161 https://doi.org/10.1038/ng.437
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmeth.1376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050712946
164 https://doi.org/10.1038/nmeth.1376
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
167 https://doi.org/10.1038/nrg2626
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
170 https://doi.org/10.1186/gb-2009-10-3-r25
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ygeno.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052838811
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/bib/bbq015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203929
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/bioinformatics/btp275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028544032
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/btp486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044211863
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/dcc.2008.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095757483
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/dcc.2009.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093332470
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/sfcs.2000.892127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093824115
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1137/s0097539702402354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879354
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/1216370.1216372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726603
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.266515.3 schema:alternateName University of Kansas
197 schema:name Department of Electrical Engineering and Computer Science, The University of Kansas, 66045, Lawrence, KS, U.S.A
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
200 schema:name Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan, R.O.C
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.64337.35 schema:alternateName Louisiana State University
203 schema:name Department of Computer Science, Louisiana State University, 70810, Baton Rouge, LA, U.S.A
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...