RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11-02

AUTHORS

Emilie Villar, Christophe Klopp, Céline Noirot, Evandro Novaes, Matias Kirst, Christophe Plomion, Jean-Marc Gion

ABSTRACT

BackgroundIn a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit.ResultsPyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed.ConclusionsFor the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study. More... »

PAGES

538

References to SciGraph publications

  • 2006-11-14. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development in BMC PLANT BIOLOGY
  • 2009-12-08. Sequencing technologies — the next generation in NATURE REVIEWS GENETICS
  • 2010-12-08. Applications of next generation sequencing in molecular ecology of non-model organisms in HEREDITY
  • 2009-03-27. A new genomic resource dedicated to wood formation in Eucalyptus in BMC PLANT BIOLOGY
  • 2010-09-07. Screening Arabidopsis Genotypes for Drought Stress Resistance in PLANT REVERSE GENETICS
  • 2005-10. Whole Gene Family Expression and Drought Stress Regulation of Aquaporins in PLANT MOLECULAR BIOLOGY
  • 2009-08-26. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development in BMC GENOMICS
  • 2010-12-01. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq in BMC GENOMICS
  • 2005-07-31. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 2009-07-06. Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing in BMC GENOMICS
  • 2001-03. Guard cell abscisic acid signalling and engineering drought hardiness in plants in NATURE
  • 2009-10-08. Novel software package for cross-platform transcriptome analysis (CPTRA) in BMC BIOINFORMATICS
  • 2009-09-24. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways in BMC GENOMICS
  • 2004-03. Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists in NEW FORESTS
  • 2010-11-23. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak in BMC GENOMICS
  • 2009-05-09. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection in BMC PLANT BIOLOGY
  • 2006-06-09. Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida(Asteraceae) in BMC PLANT BIOLOGY
  • 2010-11-12. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes in BMC GENOMICS
  • 2008-06-30. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome in BMC GENOMICS
  • 2009-08-01. Comparison of next generation sequencing technologies for transcriptome characterization in BMC GENOMICS
  • 2008-03-04. Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia in TREE GENETICS & GENOMES
  • 2008-10-31. Development and functional annotation of an 11,303-EST collection from Eucalyptus for studies of cold tolerance in TREE GENETICS & GENOMES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-12-538

    DOI

    http://dx.doi.org/10.1186/1471-2164-12-538

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014226083

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22047139


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Droughts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Eucalyptus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Expressed Sequence Tags", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soil", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Water", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CRDPI, BP1291, Pointe Noire, Congo", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398, Montpellier Cedex 5, France", 
                "INRA, UMR1202 BIOGECO, F-33610, Cestas, France", 
                "CRDPI, BP1291, Pointe Noire, Congo"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Villar", 
            "givenName": "Emilie", 
            "id": "sg:person.01161630126.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161630126.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plateforme bioinformatique Genotoul, UR875 Biom\u00e9trie et Intelligence Artificielle, INRA, 31326, Castanet-Tolosan, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Plateforme bioinformatique Genotoul, UR875 Biom\u00e9trie et Intelligence Artificielle, INRA, 31326, Castanet-Tolosan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klopp", 
            "givenName": "Christophe", 
            "id": "sg:person.0635515327.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635515327.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plateforme bioinformatique Genotoul, UR875 Biom\u00e9trie et Intelligence Artificielle, INRA, 31326, Castanet-Tolosan, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Plateforme bioinformatique Genotoul, UR875 Biom\u00e9trie et Intelligence Artificielle, INRA, 31326, Castanet-Tolosan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noirot", 
            "givenName": "C\u00e9line", 
            "id": "sg:person.01131147446.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131147446.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidade Federal de Goi\u00e1s, Caixa Postal 131, CEP 74690-900, Goi\u00e2nia, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.411195.9", 
              "name": [
                "School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA", 
                "Universidade Federal de Goi\u00e1s, Caixa Postal 131, CEP 74690-900, Goi\u00e2nia, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novaes", 
            "givenName": "Evandro", 
            "id": "sg:person.0664034027.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664034027.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA", 
              "id": "http://www.grid.ac/institutes/grid.15276.37", 
              "name": [
                "School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirst", 
            "givenName": "Matias", 
            "id": "sg:person.01004123527.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004123527.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 de Bordeaux, UMR1202 BIOGECO, F-33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.412041.2", 
              "name": [
                "INRA, UMR1202 BIOGECO, F-33610, Cestas, France", 
                "Universit\u00e9 de Bordeaux, UMR1202 BIOGECO, F-33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Plomion", 
            "givenName": "Christophe", 
            "id": "sg:person.0666701026.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666701026.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INRA, UMR1202 BIOGECO, F-33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.507621.7", 
              "name": [
                "CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398, Montpellier Cedex 5, France", 
                "INRA, UMR1202 BIOGECO, F-33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gion", 
            "givenName": "Jean-Marc", 
            "id": "sg:person.01015124413.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015124413.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2229-9-51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029233381", 
              "https://doi.org/10.1186/1471-2229-9-51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35066500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042275691", 
              "https://doi.org/10.1038/35066500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-9-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026146588", 
              "https://doi.org/10.1186/1471-2229-9-36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023911485", 
              "https://doi.org/10.1038/nrg2626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026116438", 
              "https://doi.org/10.1186/1471-2164-11-630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010043397", 
              "https://doi.org/10.1186/1471-2164-9-312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036743512", 
              "https://doi.org/10.1186/1471-2164-11-650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2010.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005420306", 
              "https://doi.org/10.1038/hdy.2010.152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-60761-682-5_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003460227", 
              "https://doi.org/10.1007/978-1-60761-682-5_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040076830", 
              "https://doi.org/10.1186/1471-2164-11-681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-0352-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048113321", 
              "https://doi.org/10.1007/s11103-005-0352-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046303245", 
              "https://doi.org/10.1186/1471-2164-10-452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047680568", 
              "https://doi.org/10.1186/1471-2164-10-399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001605260", 
              "https://doi.org/10.1186/1471-2164-10-299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-s11-s16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041324407", 
              "https://doi.org/10.1186/1471-2105-10-s11-s16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-007-0128-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046026644", 
              "https://doi.org/10.1007/s11295-007-0128-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-008-0184-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044953380", 
              "https://doi.org/10.1007/s11295-008-0184-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016174539", 
              "https://doi.org/10.1186/1471-2164-10-347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-6-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021684477", 
              "https://doi.org/10.1186/1471-2229-6-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-6-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021394474", 
              "https://doi.org/10.1186/1471-2229-6-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025021324564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015427313", 
              "https://doi.org/10.1023/a:1025021324564"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-11-02", 
        "datePublishedReg": "2011-11-02", 
        "description": "BackgroundIn a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit.ResultsPyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed.ConclusionsFor the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-12-538", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "primary metabolism", 
          "productive genotypes", 
          "water deficit", 
          "stress signal transduction", 
          "molecular response", 
          "water availability", 
          "expression of genes", 
          "dry season", 
          "EST collection", 
          "phenotypic plasticity", 
          "secondary metabolism", 
          "transcriptome coverage", 
          "signal transduction", 
          "RNA-seq", 
          "shoot apex", 
          "cellular stress", 
          "photosynthetic activity", 
          "functional proteins", 
          "environmental variation", 
          "cell organization", 
          "molecular mechanisms", 
          "water stress", 
          "differential expression", 
          "contigs", 
          "base pairs", 
          "genes", 
          "Eucalyptus plantations", 
          "significant genotype", 
          "single generation", 
          "unigenes", 
          "Eucalyptus hybrid", 
          "different pathways", 
          "genotypes", 
          "Eucalyptus", 
          "expression", 
          "metabolism", 
          "biomass growth", 
          "climate change", 
          "adaptive nature", 
          "season", 
          "hybrids", 
          "transduction", 
          "photosystems", 
          "RNA", 
          "species", 
          "protein", 
          "abundance", 
          "reads", 
          "resource reallocation", 
          "pathway", 
          "productivity", 
          "water shortage", 
          "stress", 
          "plasticity", 
          "plantations", 
          "availability", 
          "response", 
          "trees", 
          "major changes", 
          "adaptation", 
          "treatment interaction", 
          "large set", 
          "growth", 
          "maintenance", 
          "key factors", 
          "mechanism", 
          "apex", 
          "interaction", 
          "activity", 
          "changes", 
          "transport", 
          "variation", 
          "broad set", 
          "pairs", 
          "ability", 
          "further efforts", 
          "study", 
          "factors", 
          "catalogue", 
          "generation", 
          "analysis", 
          "collection", 
          "key characteristics", 
          "set", 
          "organization", 
          "strategies", 
          "reallocation", 
          "decrease", 
          "efforts", 
          "shortage", 
          "data", 
          "deficits", 
          "nature", 
          "treatment", 
          "context", 
          "characteristics", 
          "means", 
          "digital analysis", 
          "coverage", 
          "BackgroundIn"
        ], 
        "name": "RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus", 
        "pagination": "538", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014226083"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-12-538"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22047139"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-12-538", 
          "https://app.dimensions.ai/details/publication/pub.1014226083"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_532.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-12-538"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-538'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-538'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-538'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-538'


     

    This table displays all metadata directly associated to this object as RDF triples.

    366 TRIPLES      22 PREDICATES      162 URIs      131 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-12-538 schema:about N3b3cc05fb5384f10af24a57f3ba1db73
    2 N48d5446ae08d4f5e9c4cdc6c2f46b233
    3 N51964bc85c29483eb4148d1c2c3ab66c
    4 N54f78f7b3929446b9539120609abb280
    5 N5a7a205a48724868afe9fce5f580507f
    6 N65787ab9811a4528b9ad11358ccc693b
    7 N89176ce6ecf54a67ac6c7068031753c7
    8 Naa1757225ce94625b9fd6bf93a6cbe5e
    9 Nac841844f52d46f28efc4b43967a659a
    10 Nc81962205f6e47c386f6ee433dbb3bbc
    11 Nd483baf7066f4a4d9382e8518a85ed5c
    12 Nddddad1574144a1dbfa7ee3f36a987a8
    13 Ne62a4a5d573046f69cbff1d1f51971b9
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 anzsrc-for:0607
    17 schema:author N5b0d4990e2674e41addf667270c0678d
    18 schema:citation sg:pub.10.1007/978-1-60761-682-5_14
    19 sg:pub.10.1007/s11103-005-0352-1
    20 sg:pub.10.1007/s11295-007-0128-7
    21 sg:pub.10.1007/s11295-008-0184-7
    22 sg:pub.10.1023/a:1025021324564
    23 sg:pub.10.1038/35066500
    24 sg:pub.10.1038/hdy.2010.152
    25 sg:pub.10.1038/nature03959
    26 sg:pub.10.1038/nrg2626
    27 sg:pub.10.1186/1471-2105-10-s11-s16
    28 sg:pub.10.1186/1471-2164-10-299
    29 sg:pub.10.1186/1471-2164-10-347
    30 sg:pub.10.1186/1471-2164-10-399
    31 sg:pub.10.1186/1471-2164-10-452
    32 sg:pub.10.1186/1471-2164-11-630
    33 sg:pub.10.1186/1471-2164-11-650
    34 sg:pub.10.1186/1471-2164-11-681
    35 sg:pub.10.1186/1471-2164-9-312
    36 sg:pub.10.1186/1471-2229-6-11
    37 sg:pub.10.1186/1471-2229-6-27
    38 sg:pub.10.1186/1471-2229-9-36
    39 sg:pub.10.1186/1471-2229-9-51
    40 schema:datePublished 2011-11-02
    41 schema:datePublishedReg 2011-11-02
    42 schema:description BackgroundIn a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit.ResultsPyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed.ConclusionsFor the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.
    43 schema:genre article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N046fbd726391486eb25f2c8d4049270f
    47 N150b7fbd059040c088e967de3c377d03
    48 sg:journal.1023790
    49 schema:keywords BackgroundIn
    50 EST collection
    51 Eucalyptus
    52 Eucalyptus hybrid
    53 Eucalyptus plantations
    54 RNA
    55 RNA-seq
    56 ability
    57 abundance
    58 activity
    59 adaptation
    60 adaptive nature
    61 analysis
    62 apex
    63 availability
    64 base pairs
    65 biomass growth
    66 broad set
    67 catalogue
    68 cell organization
    69 cellular stress
    70 changes
    71 characteristics
    72 climate change
    73 collection
    74 context
    75 contigs
    76 coverage
    77 data
    78 decrease
    79 deficits
    80 different pathways
    81 differential expression
    82 digital analysis
    83 dry season
    84 efforts
    85 environmental variation
    86 expression
    87 expression of genes
    88 factors
    89 functional proteins
    90 further efforts
    91 generation
    92 genes
    93 genotypes
    94 growth
    95 hybrids
    96 interaction
    97 key characteristics
    98 key factors
    99 large set
    100 maintenance
    101 major changes
    102 means
    103 mechanism
    104 metabolism
    105 molecular mechanisms
    106 molecular response
    107 nature
    108 organization
    109 pairs
    110 pathway
    111 phenotypic plasticity
    112 photosynthetic activity
    113 photosystems
    114 plantations
    115 plasticity
    116 primary metabolism
    117 productive genotypes
    118 productivity
    119 protein
    120 reads
    121 reallocation
    122 resource reallocation
    123 response
    124 season
    125 secondary metabolism
    126 set
    127 shoot apex
    128 shortage
    129 signal transduction
    130 significant genotype
    131 single generation
    132 species
    133 strategies
    134 stress
    135 stress signal transduction
    136 study
    137 transcriptome coverage
    138 transduction
    139 transport
    140 treatment
    141 treatment interaction
    142 trees
    143 unigenes
    144 variation
    145 water availability
    146 water deficit
    147 water shortage
    148 water stress
    149 schema:name RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus
    150 schema:pagination 538
    151 schema:productId N1de46f5669c14ca48f98ae98e325f2bb
    152 N33ea1dd760f640698a10b97c5079cf9c
    153 N8cb318da681246fea408894db6bfc887
    154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014226083
    155 https://doi.org/10.1186/1471-2164-12-538
    156 schema:sdDatePublished 2022-06-01T22:08
    157 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    158 schema:sdPublisher Nb33d3082919041558d5da6b1cf73b707
    159 schema:url https://doi.org/10.1186/1471-2164-12-538
    160 sgo:license sg:explorer/license/
    161 sgo:sdDataset articles
    162 rdf:type schema:ScholarlyArticle
    163 N046fbd726391486eb25f2c8d4049270f schema:volumeNumber 12
    164 rdf:type schema:PublicationVolume
    165 N0972d4b1f4dd4ab791fda819354a337b rdf:first sg:person.01131147446.55
    166 rdf:rest Ned5e3626358642898ca7d7808bf40d18
    167 N150b7fbd059040c088e967de3c377d03 schema:issueNumber 1
    168 rdf:type schema:PublicationIssue
    169 N17f7f59a4fb740e198a95e227cf9f26f rdf:first sg:person.01015124413.32
    170 rdf:rest rdf:nil
    171 N1de46f5669c14ca48f98ae98e325f2bb schema:name dimensions_id
    172 schema:value pub.1014226083
    173 rdf:type schema:PropertyValue
    174 N33ea1dd760f640698a10b97c5079cf9c schema:name pubmed_id
    175 schema:value 22047139
    176 rdf:type schema:PropertyValue
    177 N346f304568af42b091cbf3aa23d502f9 rdf:first sg:person.0666701026.90
    178 rdf:rest N17f7f59a4fb740e198a95e227cf9f26f
    179 N3b3cc05fb5384f10af24a57f3ba1db73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Genotype
    181 rdf:type schema:DefinedTerm
    182 N48d5446ae08d4f5e9c4cdc6c2f46b233 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Biomass
    184 rdf:type schema:DefinedTerm
    185 N51964bc85c29483eb4148d1c2c3ab66c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Expressed Sequence Tags
    187 rdf:type schema:DefinedTerm
    188 N54f78f7b3929446b9539120609abb280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Soil
    190 rdf:type schema:DefinedTerm
    191 N5a7a205a48724868afe9fce5f580507f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Gene Library
    193 rdf:type schema:DefinedTerm
    194 N5b0d4990e2674e41addf667270c0678d rdf:first sg:person.01161630126.09
    195 rdf:rest Nc0b70c8ce3d247ae8f9e6f15da204783
    196 N65787ab9811a4528b9ad11358ccc693b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Transcriptome
    198 rdf:type schema:DefinedTerm
    199 N7735fe60e0384ce3bf9dce89c0e7078e rdf:first sg:person.01004123527.02
    200 rdf:rest N346f304568af42b091cbf3aa23d502f9
    201 N89176ce6ecf54a67ac6c7068031753c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name RNA, Plant
    203 rdf:type schema:DefinedTerm
    204 N8cb318da681246fea408894db6bfc887 schema:name doi
    205 schema:value 10.1186/1471-2164-12-538
    206 rdf:type schema:PropertyValue
    207 Naa1757225ce94625b9fd6bf93a6cbe5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Phenotype
    209 rdf:type schema:DefinedTerm
    210 Nac841844f52d46f28efc4b43967a659a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Water
    212 rdf:type schema:DefinedTerm
    213 Nb33d3082919041558d5da6b1cf73b707 schema:name Springer Nature - SN SciGraph project
    214 rdf:type schema:Organization
    215 Nc0b70c8ce3d247ae8f9e6f15da204783 rdf:first sg:person.0635515327.32
    216 rdf:rest N0972d4b1f4dd4ab791fda819354a337b
    217 Nc81962205f6e47c386f6ee433dbb3bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Gene Expression Regulation, Plant
    219 rdf:type schema:DefinedTerm
    220 Nd483baf7066f4a4d9382e8518a85ed5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    221 schema:name Eucalyptus
    222 rdf:type schema:DefinedTerm
    223 Nddddad1574144a1dbfa7ee3f36a987a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    224 schema:name Sequence Analysis, RNA
    225 rdf:type schema:DefinedTerm
    226 Ne62a4a5d573046f69cbff1d1f51971b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    227 schema:name Droughts
    228 rdf:type schema:DefinedTerm
    229 Ned5e3626358642898ca7d7808bf40d18 rdf:first sg:person.0664034027.82
    230 rdf:rest N7735fe60e0384ce3bf9dce89c0e7078e
    231 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    232 schema:name Biological Sciences
    233 rdf:type schema:DefinedTerm
    234 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    235 schema:name Genetics
    236 rdf:type schema:DefinedTerm
    237 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    238 schema:name Plant Biology
    239 rdf:type schema:DefinedTerm
    240 sg:journal.1023790 schema:issn 1471-2164
    241 schema:name BMC Genomics
    242 schema:publisher Springer Nature
    243 rdf:type schema:Periodical
    244 sg:person.01004123527.02 schema:affiliation grid-institutes:grid.15276.37
    245 schema:familyName Kirst
    246 schema:givenName Matias
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004123527.02
    248 rdf:type schema:Person
    249 sg:person.01015124413.32 schema:affiliation grid-institutes:grid.507621.7
    250 schema:familyName Gion
    251 schema:givenName Jean-Marc
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015124413.32
    253 rdf:type schema:Person
    254 sg:person.01131147446.55 schema:affiliation grid-institutes:None
    255 schema:familyName Noirot
    256 schema:givenName Céline
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131147446.55
    258 rdf:type schema:Person
    259 sg:person.01161630126.09 schema:affiliation grid-institutes:None
    260 schema:familyName Villar
    261 schema:givenName Emilie
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161630126.09
    263 rdf:type schema:Person
    264 sg:person.0635515327.32 schema:affiliation grid-institutes:None
    265 schema:familyName Klopp
    266 schema:givenName Christophe
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635515327.32
    268 rdf:type schema:Person
    269 sg:person.0664034027.82 schema:affiliation grid-institutes:grid.411195.9
    270 schema:familyName Novaes
    271 schema:givenName Evandro
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664034027.82
    273 rdf:type schema:Person
    274 sg:person.0666701026.90 schema:affiliation grid-institutes:grid.412041.2
    275 schema:familyName Plomion
    276 schema:givenName Christophe
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666701026.90
    278 rdf:type schema:Person
    279 sg:pub.10.1007/978-1-60761-682-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003460227
    280 https://doi.org/10.1007/978-1-60761-682-5_14
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s11103-005-0352-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048113321
    283 https://doi.org/10.1007/s11103-005-0352-1
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s11295-007-0128-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026644
    286 https://doi.org/10.1007/s11295-007-0128-7
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s11295-008-0184-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044953380
    289 https://doi.org/10.1007/s11295-008-0184-7
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1023/a:1025021324564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015427313
    292 https://doi.org/10.1023/a:1025021324564
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/35066500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042275691
    295 https://doi.org/10.1038/35066500
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/hdy.2010.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005420306
    298 https://doi.org/10.1038/hdy.2010.152
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    301 https://doi.org/10.1038/nature03959
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
    304 https://doi.org/10.1038/nrg2626
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/1471-2105-10-s11-s16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041324407
    307 https://doi.org/10.1186/1471-2105-10-s11-s16
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/1471-2164-10-299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001605260
    310 https://doi.org/10.1186/1471-2164-10-299
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/1471-2164-10-347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016174539
    313 https://doi.org/10.1186/1471-2164-10-347
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/1471-2164-10-399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047680568
    316 https://doi.org/10.1186/1471-2164-10-399
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/1471-2164-10-452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303245
    319 https://doi.org/10.1186/1471-2164-10-452
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/1471-2164-11-630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026116438
    322 https://doi.org/10.1186/1471-2164-11-630
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/1471-2164-11-650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743512
    325 https://doi.org/10.1186/1471-2164-11-650
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/1471-2164-11-681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040076830
    328 https://doi.org/10.1186/1471-2164-11-681
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/1471-2164-9-312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010043397
    331 https://doi.org/10.1186/1471-2164-9-312
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1471-2229-6-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021684477
    334 https://doi.org/10.1186/1471-2229-6-11
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1471-2229-6-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021394474
    337 https://doi.org/10.1186/1471-2229-6-27
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/1471-2229-9-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026146588
    340 https://doi.org/10.1186/1471-2229-9-36
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/1471-2229-9-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029233381
    343 https://doi.org/10.1186/1471-2229-9-51
    344 rdf:type schema:CreativeWork
    345 grid-institutes:None schema:alternateName CRDPI, BP1291, Pointe Noire, Congo
    346 Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 31326, Castanet-Tolosan, France
    347 schema:name CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398, Montpellier Cedex 5, France
    348 CRDPI, BP1291, Pointe Noire, Congo
    349 INRA, UMR1202 BIOGECO, F-33610, Cestas, France
    350 Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 31326, Castanet-Tolosan, France
    351 rdf:type schema:Organization
    352 grid-institutes:grid.15276.37 schema:alternateName School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA
    353 schema:name School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA
    354 rdf:type schema:Organization
    355 grid-institutes:grid.411195.9 schema:alternateName Universidade Federal de Goiás, Caixa Postal 131, CEP 74690-900, Goiânia, Brazil
    356 schema:name School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA
    357 Universidade Federal de Goiás, Caixa Postal 131, CEP 74690-900, Goiânia, Brazil
    358 rdf:type schema:Organization
    359 grid-institutes:grid.412041.2 schema:alternateName Université de Bordeaux, UMR1202 BIOGECO, F-33610, Cestas, France
    360 schema:name INRA, UMR1202 BIOGECO, F-33610, Cestas, France
    361 Université de Bordeaux, UMR1202 BIOGECO, F-33610, Cestas, France
    362 rdf:type schema:Organization
    363 grid-institutes:grid.507621.7 schema:alternateName INRA, UMR1202 BIOGECO, F-33610, Cestas, France
    364 schema:name CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398, Montpellier Cedex 5, France
    365 INRA, UMR1202 BIOGECO, F-33610, Cestas, France
    366 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...