RNA-seq: technical variability and sampling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Lauren M McIntyre, Kenneth K Lopiano, Alison M Morse, Victor Amin, Ann L Oberg, Linda J Young, Sergey V Nuzhdin

ABSTRACT

BACKGROUND: RNA-seq is revolutionizing the way we study transcriptomes. mRNA can be surveyed without prior knowledge of gene transcripts. Alternative splicing of transcript isoforms and the identification of previously unknown exons are being reported. Initial reports of differences in exon usage, and splicing between samples as well as quantitative differences among samples are beginning to surface. Biological variation has been reported to be larger than technical variation. In addition, technical variation has been reported to be in line with expectations due to random sampling. However, strategies for dealing with technical variation will differ depending on the magnitude. The size of technical variance, and the role of sampling are examined in this manuscript. RESULTS: In this study three independent Solexa/Illumina experiments containing technical replicates are analyzed. When coverage is low, large disagreements between technical replicates are apparent. Exon detection between technical replicates is highly variable when the coverage is less than 5 reads per nucleotide and estimates of gene expression are more likely to disagree when coverage is low. Although large disagreements in the estimates of expression are observed at all levels of coverage. CONCLUSIONS: Technical variability is too high to ignore. Technical variability results in inconsistent detection of exons at low levels of coverage. Further, the estimate of the relative abundance of a transcript can substantially disagree, even when coverage levels are high. This may be due to the low sampling fraction and if so, it will persist as an issue needing to be addressed in experimental design even as the next wave of technology produces larger numbers of reads. We provide practical recommendations for dealing with the technical variability, without dramatic cost increases. More... »

PAGES

293

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-12-293

DOI

http://dx.doi.org/10.1186/1471-2164-12-293

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044559205

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21645359


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McIntyre", 
        "givenName": "Lauren M", 
        "id": "sg:person.0616750263.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616750263.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Statistics, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopiano", 
        "givenName": "Kenneth K", 
        "id": "sg:person.0763126761.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763126761.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morse", 
        "givenName": "Alison M", 
        "id": "sg:person.01113304437.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113304437.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amin", 
        "givenName": "Victor", 
        "id": "sg:person.01053131707.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053131707.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberg", 
        "givenName": "Ann L", 
        "id": "sg:person.0762537264.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762537264.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Statistics, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "Linda J", 
        "id": "sg:person.01031242161.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031242161.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Molecular and Computational Biology, University of Southern California, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nuzhdin", 
        "givenName": "Sergey V", 
        "id": "sg:person.0711604763.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711604763.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkq010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000721388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005207270", 
          "https://doi.org/10.1186/1471-2164-10-531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/17.2.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005472070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009524511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chin.200506198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr700734f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015787477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-2-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016160821", 
          "https://doi.org/10.1186/1755-8794-2-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.1699809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019281522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0708-585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023481283", 
          "https://doi.org/10.1038/nmeth0708-585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023653905", 
          "https://doi.org/10.1038/nmeth.1311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026453845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.114983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031164330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.114983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031164330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031289083", 
          "https://doi.org/10.1186/gb-2010-11-10-r106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034245845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/ncn-200026054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035325514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-440x(96)80052-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037052415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038683976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1160342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042163407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/459927a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043448162", 
          "https://doi.org/10.1038/459927a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/459927a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043448162", 
          "https://doi.org/10.1038/459927a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044630803", 
          "https://doi.org/10.1038/nature08872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044630803", 
          "https://doi.org/10.1038/nature08872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045373440", 
          "https://doi.org/10.1186/1745-6150-4-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.079558.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045837493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/2.2.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048829539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-583-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050372161", 
          "https://doi.org/10.1007/978-1-59745-583-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050509557", 
          "https://doi.org/10.1186/gb-2010-11-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.11.1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052809483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053091615", 
          "https://doi.org/10.1186/1471-2105-11-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr8010099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056294745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/5.3.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7690155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062648415"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: RNA-seq is revolutionizing the way we study transcriptomes. mRNA can be surveyed without prior knowledge of gene transcripts. Alternative splicing of transcript isoforms and the identification of previously unknown exons are being reported. Initial reports of differences in exon usage, and splicing between samples as well as quantitative differences among samples are beginning to surface. Biological variation has been reported to be larger than technical variation. In addition, technical variation has been reported to be in line with expectations due to random sampling. However, strategies for dealing with technical variation will differ depending on the magnitude. The size of technical variance, and the role of sampling are examined in this manuscript.\nRESULTS: In this study three independent Solexa/Illumina experiments containing technical replicates are analyzed. When coverage is low, large disagreements between technical replicates are apparent. Exon detection between technical replicates is highly variable when the coverage is less than 5 reads per nucleotide and estimates of gene expression are more likely to disagree when coverage is low. Although large disagreements in the estimates of expression are observed at all levels of coverage.\nCONCLUSIONS: Technical variability is too high to ignore. Technical variability results in inconsistent detection of exons at low levels of coverage. Further, the estimate of the relative abundance of a transcript can substantially disagree, even when coverage levels are high. This may be due to the low sampling fraction and if so, it will persist as an issue needing to be addressed in experimental design even as the next wave of technology produces larger numbers of reads. We provide practical recommendations for dealing with the technical variability, without dramatic cost increases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-12-293", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2519188", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2519057", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5246518", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3091121", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3091043", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "RNA-seq: technical variability and sampling", 
    "pagination": "293", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d4400e2181fe2c2e2b663bb46c084bcba6b9d9ebaade52926b9a88885df6d395"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21645359"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-12-293"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044559205"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-12-293", 
      "https://app.dimensions.ai/details/publication/pub.1044559205"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-12-293"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-293'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-293'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-293'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-293'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      74 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-12-293 schema:about N017ff79fbc324bf4840816e633d8b6e9
2 N090a2f14a26c4bfeb60cfcc17161651a
3 N1a7e79ccd70945e0828959c8d86de2d3
4 N2eaff9c34fc44794a88da7f00e2252d9
5 N44079f1a3c1c4fd082e44bc3a6e25c01
6 N6d9fa19e108d42c3bf64755bd11546f2
7 N88c77bcabc0f40a4bd062141df391acd
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N8ba305f0647841af83061bf667ddda12
11 schema:citation sg:pub.10.1007/978-1-59745-583-1_3
12 sg:pub.10.1038/459927a
13 sg:pub.10.1038/nature08872
14 sg:pub.10.1038/nbt.1621
15 sg:pub.10.1038/nmeth.1226
16 sg:pub.10.1038/nmeth.1311
17 sg:pub.10.1038/nmeth0708-585
18 sg:pub.10.1038/nrg2484
19 sg:pub.10.1186/1471-2105-11-94
20 sg:pub.10.1186/1471-2164-10-531
21 sg:pub.10.1186/1745-6150-4-14
22 sg:pub.10.1186/1755-8794-2-57
23 sg:pub.10.1186/gb-2009-10-3-r25
24 sg:pub.10.1186/gb-2010-11-10-r106
25 sg:pub.10.1186/gb-2010-11-3-r25
26 https://doi.org/10.1002/chin.200506198
27 https://doi.org/10.1016/s0140-6736(86)90837-8
28 https://doi.org/10.1016/s0959-440x(96)80052-2
29 https://doi.org/10.1021/pr700734f
30 https://doi.org/10.1021/pr8010099
31 https://doi.org/10.1081/ncn-200026054
32 https://doi.org/10.1093/bioinformatics/18.11.1438
33 https://doi.org/10.1093/bioinformatics/19.2.185
34 https://doi.org/10.1093/bioinformatics/btp120
35 https://doi.org/10.1093/bioinformatics/btp352
36 https://doi.org/10.1093/bioinformatics/btp544
37 https://doi.org/10.1093/bioinformatics/btp579
38 https://doi.org/10.1093/biomet/5.3.351
39 https://doi.org/10.1093/biostatistics/2.2.183
40 https://doi.org/10.1093/ije/17.2.245
41 https://doi.org/10.1093/nar/gkp492
42 https://doi.org/10.1093/nar/gkq010
43 https://doi.org/10.1101/gr.079558.108
44 https://doi.org/10.1126/science.1160342
45 https://doi.org/10.1126/science.7690155
46 https://doi.org/10.1261/rna.1699809
47 https://doi.org/10.1371/journal.pbio.0050310
48 https://doi.org/10.1534/genetics.110.114983
49 schema:datePublished 2011-12
50 schema:datePublishedReg 2011-12-01
51 schema:description BACKGROUND: RNA-seq is revolutionizing the way we study transcriptomes. mRNA can be surveyed without prior knowledge of gene transcripts. Alternative splicing of transcript isoforms and the identification of previously unknown exons are being reported. Initial reports of differences in exon usage, and splicing between samples as well as quantitative differences among samples are beginning to surface. Biological variation has been reported to be larger than technical variation. In addition, technical variation has been reported to be in line with expectations due to random sampling. However, strategies for dealing with technical variation will differ depending on the magnitude. The size of technical variance, and the role of sampling are examined in this manuscript. RESULTS: In this study three independent Solexa/Illumina experiments containing technical replicates are analyzed. When coverage is low, large disagreements between technical replicates are apparent. Exon detection between technical replicates is highly variable when the coverage is less than 5 reads per nucleotide and estimates of gene expression are more likely to disagree when coverage is low. Although large disagreements in the estimates of expression are observed at all levels of coverage. CONCLUSIONS: Technical variability is too high to ignore. Technical variability results in inconsistent detection of exons at low levels of coverage. Further, the estimate of the relative abundance of a transcript can substantially disagree, even when coverage levels are high. This may be due to the low sampling fraction and if so, it will persist as an issue needing to be addressed in experimental design even as the next wave of technology produces larger numbers of reads. We provide practical recommendations for dealing with the technical variability, without dramatic cost increases.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N2bf74eca944d4e449b2b937a36a58e14
56 N5a1a1d702658477caaf668097238ba54
57 sg:journal.1023790
58 schema:name RNA-seq: technical variability and sampling
59 schema:pagination 293
60 schema:productId N3816eab7449c4aa98c4cc05ce94f06c7
61 N6a105f4635d9439e8d1fa252bfc94856
62 N781b5e02d50545b38f263df8cdb7f949
63 N9ce7fb42474447b98890da4084297ed4
64 Ncfcc5901660a4bfa8dbd340b1540b0aa
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559205
66 https://doi.org/10.1186/1471-2164-12-293
67 schema:sdDatePublished 2019-04-10T16:41
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nf75717ed6bc64fbe80f836a94a4c5985
70 schema:url http://link.springer.com/10.1186%2F1471-2164-12-293
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N00242d17bc454e7780156c410b65c047 rdf:first sg:person.01031242161.14
75 rdf:rest N63288edd3bb941dcaf8aa1dfed2740ea
76 N0089aec7d4f246e8bb04488f8bde8fcb rdf:first sg:person.0762537264.90
77 rdf:rest N00242d17bc454e7780156c410b65c047
78 N017ff79fbc324bf4840816e633d8b6e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Sequence Analysis, RNA
80 rdf:type schema:DefinedTerm
81 N090a2f14a26c4bfeb60cfcc17161651a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Drosophila
83 rdf:type schema:DefinedTerm
84 N1a7e79ccd70945e0828959c8d86de2d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Exons
86 rdf:type schema:DefinedTerm
87 N2bf74eca944d4e449b2b937a36a58e14 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N2eaff9c34fc44794a88da7f00e2252d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Male
91 rdf:type schema:DefinedTerm
92 N3816eab7449c4aa98c4cc05ce94f06c7 schema:name nlm_unique_id
93 schema:value 100965258
94 rdf:type schema:PropertyValue
95 N44079f1a3c1c4fd082e44bc3a6e25c01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Female
97 rdf:type schema:DefinedTerm
98 N5a1a1d702658477caaf668097238ba54 schema:volumeNumber 12
99 rdf:type schema:PublicationVolume
100 N63288edd3bb941dcaf8aa1dfed2740ea rdf:first sg:person.0711604763.41
101 rdf:rest rdf:nil
102 N6a105f4635d9439e8d1fa252bfc94856 schema:name doi
103 schema:value 10.1186/1471-2164-12-293
104 rdf:type schema:PropertyValue
105 N6d9fa19e108d42c3bf64755bd11546f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Gene Expression Profiling
107 rdf:type schema:DefinedTerm
108 N781b5e02d50545b38f263df8cdb7f949 schema:name readcube_id
109 schema:value d4400e2181fe2c2e2b663bb46c084bcba6b9d9ebaade52926b9a88885df6d395
110 rdf:type schema:PropertyValue
111 N88c77bcabc0f40a4bd062141df391acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Animals
113 rdf:type schema:DefinedTerm
114 N8ba305f0647841af83061bf667ddda12 rdf:first sg:person.0616750263.28
115 rdf:rest Nb1805f6c82524c0ebab4da5bfdedba4f
116 N9ce7fb42474447b98890da4084297ed4 schema:name pubmed_id
117 schema:value 21645359
118 rdf:type schema:PropertyValue
119 Na9881b66a3a54e76ac5a8ce7ce46e09c rdf:first sg:person.01053131707.79
120 rdf:rest N0089aec7d4f246e8bb04488f8bde8fcb
121 Nb1805f6c82524c0ebab4da5bfdedba4f rdf:first sg:person.0763126761.34
122 rdf:rest Nf47652d99c3642fbb307bc7a7726c648
123 Ncfcc5901660a4bfa8dbd340b1540b0aa schema:name dimensions_id
124 schema:value pub.1044559205
125 rdf:type schema:PropertyValue
126 Nf47652d99c3642fbb307bc7a7726c648 rdf:first sg:person.01113304437.21
127 rdf:rest Na9881b66a3a54e76ac5a8ce7ce46e09c
128 Nf75717ed6bc64fbe80f836a94a4c5985 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biological Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
134 schema:name Genetics
135 rdf:type schema:DefinedTerm
136 sg:grant.2519057 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-293
137 rdf:type schema:MonetaryGrant
138 sg:grant.2519188 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-293
139 rdf:type schema:MonetaryGrant
140 sg:grant.3091043 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-293
141 rdf:type schema:MonetaryGrant
142 sg:grant.3091121 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-293
143 rdf:type schema:MonetaryGrant
144 sg:grant.5246518 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-293
145 rdf:type schema:MonetaryGrant
146 sg:journal.1023790 schema:issn 1471-2164
147 schema:name BMC Genomics
148 rdf:type schema:Periodical
149 sg:person.01031242161.14 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
150 schema:familyName Young
151 schema:givenName Linda J
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031242161.14
153 rdf:type schema:Person
154 sg:person.01053131707.79 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
155 schema:familyName Amin
156 schema:givenName Victor
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053131707.79
158 rdf:type schema:Person
159 sg:person.01113304437.21 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
160 schema:familyName Morse
161 schema:givenName Alison M
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113304437.21
163 rdf:type schema:Person
164 sg:person.0616750263.28 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
165 schema:familyName McIntyre
166 schema:givenName Lauren M
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616750263.28
168 rdf:type schema:Person
169 sg:person.0711604763.41 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
170 schema:familyName Nuzhdin
171 schema:givenName Sergey V
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711604763.41
173 rdf:type schema:Person
174 sg:person.0762537264.90 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
175 schema:familyName Oberg
176 schema:givenName Ann L
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762537264.90
178 rdf:type schema:Person
179 sg:person.0763126761.34 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
180 schema:familyName Lopiano
181 schema:givenName Kenneth K
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763126761.34
183 rdf:type schema:Person
184 sg:pub.10.1007/978-1-59745-583-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050372161
185 https://doi.org/10.1007/978-1-59745-583-1_3
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/459927a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043448162
188 https://doi.org/10.1038/459927a
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature08872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044630803
191 https://doi.org/10.1038/nature08872
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
194 https://doi.org/10.1038/nbt.1621
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
197 https://doi.org/10.1038/nmeth.1226
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nmeth.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023653905
200 https://doi.org/10.1038/nmeth.1311
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth0708-585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023481283
203 https://doi.org/10.1038/nmeth0708-585
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
206 https://doi.org/10.1038/nrg2484
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2105-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053091615
209 https://doi.org/10.1186/1471-2105-11-94
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2164-10-531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005207270
212 https://doi.org/10.1186/1471-2164-10-531
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1745-6150-4-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045373440
215 https://doi.org/10.1186/1745-6150-4-14
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1755-8794-2-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016160821
218 https://doi.org/10.1186/1755-8794-2-57
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
221 https://doi.org/10.1186/gb-2009-10-3-r25
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
224 https://doi.org/10.1186/gb-2010-11-10-r106
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
227 https://doi.org/10.1186/gb-2010-11-3-r25
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/chin.200506198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900087
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0959-440x(96)80052-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037052415
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/pr700734f schema:sameAs https://app.dimensions.ai/details/publication/pub.1015787477
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1021/pr8010099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056294745
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1081/ncn-200026054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035325514
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/bioinformatics/18.11.1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052809483
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/bioinformatics/btp544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026453845
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/bioinformatics/btp579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009524511
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/biomet/5.3.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417228
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/biostatistics/2.2.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048829539
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/ije/17.2.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005472070
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/nar/gkp492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038683976
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/nar/gkq010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000721388
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1126/science.1160342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042163407
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1126/science.7690155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062648415
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1261/rna.1699809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019281522
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1371/journal.pbio.0050310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034245845
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1534/genetics.110.114983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031164330
274 rdf:type schema:CreativeWork
275 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
276 schema:name Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
277 Department of Statistics, University of Florida, Gainesville, Florida, USA
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
280 schema:name Molecular and Computational Biology, University of Southern California, California, USA
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
283 schema:name Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...