Detecting copy number status and uncovering subclonal markers in heterogeneous tumor biopsies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-11

AUTHORS

Fabio Parisi, Stephan Ariyan, Deepak Narayan, Antonella Bacchiocchi, Kathleen Hoyt, Elaine Cheng, Fang Xu, Peining Li, Ruth Halaban, Yuval Kluger

ABSTRACT

BackgroundGenomic aberrations can be used to determine cancer diagnosis and prognosis. Clinically relevant novel aberrations can be discovered using high-throughput assays such as Single Nucleotide Polymorphism (SNP) arrays and next-generation sequencing, which typically provide aggregate signals of many cells at once. However, heterogeneity of tumor subclones dramatically complicates the task of detecting aberrations.ResultsThe aggregate signal of a population of subclones can be described as a linear system of equations. We employed a measure of allelic imbalance and total amount of DNA to characterize each locus by the copy number status (gain, loss or neither) of the strongest subclonal component. We designed simulated data to compare our measure to existing approaches and we analyzed SNP-arrays from 30 melanoma samples and transcriptome sequencing (RNA-Seq) from one melanoma sample.We showed that any system describing aggregate subclonal signals is underdetermined, leading to non-unique solutions for the exact copy number profile of subclones. For this reason, our illustrative measure was more robust than existing Hidden Markov Model (HMM) based tools in inferring the aberration status, as indicated by tests on simulated data. This higher robustness contributed in identifying numerous aberrations in several loci of melanoma samples. We validated the heterogeneity and aberration status within single biopsies by fluorescent in situ hybridization of four affected and transcriptionally up-regulated genes E2F8, ETV4, EZH2 and FAM84B in 11 melanoma cell lines. Heterogeneity was further demonstrated in the analysis of allelic imbalance changes along single exons from melanoma RNA-Seq.ConclusionsThese studies demonstrate how subclonal heterogeneity, prevalent in tumor samples, is reflected in aggregate signals measured by high-throughput techniques. Our proposed approach yields high robustness in detecting copy number alterations using high-throughput technologies and has the potential to identify specific subclonal markers from next-generation sequencing data. More... »

PAGES

230

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-12-230

DOI

http://dx.doi.org/10.1186/1471-2164-12-230

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001075625

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21569352


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parisi", 
        "givenName": "Fabio", 
        "id": "sg:person.0641350013.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641350013.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ariyan", 
        "givenName": "Stephan", 
        "id": "sg:person.014265505777.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265505777.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayan", 
        "givenName": "Deepak", 
        "id": "sg:person.01006374045.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006374045.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacchiocchi", 
        "givenName": "Antonella", 
        "id": "sg:person.01137303451.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137303451.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoyt", 
        "givenName": "Kathleen", 
        "id": "sg:person.0704046703.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704046703.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Elaine", 
        "id": "sg:person.01271010511.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271010511.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Fang", 
        "id": "sg:person.01337123711.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337123711.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Peining", 
        "id": "sg:person.01052455262.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052455262.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halaban", 
        "givenName": "Ruth", 
        "id": "sg:person.053601122.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053601122.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kluger", 
        "givenName": "Yuval", 
        "id": "sg:person.0731526665.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731526665.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nm1437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021172539", 
          "https://doi.org/10.1038/nm1437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031272000", 
          "https://doi.org/10.1038/ng.549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002811063", 
          "https://doi.org/10.1038/ng.563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051134045", 
          "https://doi.org/10.1038/nature06258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010635813", 
          "https://doi.org/10.1038/nature08822"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-11", 
    "datePublishedReg": "2011-05-11", 
    "description": "BackgroundGenomic aberrations can be used to determine cancer diagnosis and prognosis. Clinically relevant novel aberrations can be discovered using high-throughput assays such as Single Nucleotide Polymorphism (SNP) arrays and next-generation sequencing, which typically provide aggregate signals of many cells at once. However, heterogeneity of tumor subclones dramatically complicates the task of detecting aberrations.ResultsThe aggregate signal of a population of subclones can be described as a linear system of equations. We employed a measure of allelic imbalance and total amount of DNA to characterize each locus by the copy number status (gain, loss or neither) of the strongest subclonal component. We designed simulated data to compare our measure to existing approaches and we analyzed SNP-arrays from 30 melanoma samples and transcriptome sequencing (RNA-Seq) from one melanoma sample.We showed that any system describing aggregate subclonal signals is underdetermined, leading to non-unique solutions for the exact copy number profile of subclones. For this reason, our illustrative measure was more robust than existing Hidden Markov Model (HMM) based tools in inferring the aberration status, as indicated by tests on simulated data. This higher robustness contributed in identifying numerous aberrations in several loci of melanoma samples. We validated the heterogeneity and aberration status within single biopsies by fluorescent in situ hybridization of four affected and transcriptionally up-regulated genes E2F8, ETV4, EZH2 and FAM84B in 11 melanoma cell lines. Heterogeneity was further demonstrated in the analysis of allelic imbalance changes along single exons from melanoma RNA-Seq.ConclusionsThese studies demonstrate how subclonal heterogeneity, prevalent in tumor samples, is reflected in aggregate signals measured by high-throughput techniques. Our proposed approach yields high robustness in detecting copy number alterations using high-throughput technologies and has the potential to identify specific subclonal markers from next-generation sequencing data.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-12-230", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440220", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "copy number status", 
      "melanoma samples", 
      "single nucleotide polymorphism array", 
      "high-throughput technologies", 
      "next-generation sequencing data", 
      "high-throughput techniques", 
      "high-throughput assays", 
      "copy number profiles", 
      "nucleotide polymorphism array", 
      "number status", 
      "copy number alterations", 
      "transcriptome sequencing", 
      "next-generation sequencing", 
      "RNA-seq", 
      "single exon", 
      "SNP array", 
      "sequencing data", 
      "melanoma cell lines", 
      "polymorphism array", 
      "numerous aberrations", 
      "novel aberrations", 
      "number alterations", 
      "subclonal heterogeneity", 
      "situ hybridization", 
      "allelic imbalance", 
      "cell lines", 
      "aberration status", 
      "tumor subclones", 
      "subclones", 
      "sequencing", 
      "number profiles", 
      "tumor samples", 
      "aberrations", 
      "exons", 
      "ETV4", 
      "E2F8", 
      "loci", 
      "FAM84B", 
      "EZH2", 
      "DNA", 
      "markers", 
      "ConclusionsThese studies", 
      "hybridization", 
      "heterogeneity", 
      "aggregate signal", 
      "cells", 
      "assays", 
      "signals", 
      "fluorescent", 
      "alterations", 
      "population", 
      "lines", 
      "total amount", 
      "tumor biopsies", 
      "status", 
      "single biopsy", 
      "illustrative measure", 
      "components", 
      "data", 
      "potential", 
      "profile", 
      "changes", 
      "imbalance", 
      "analysis", 
      "array", 
      "samples", 
      "Hidden Markov Model", 
      "amount", 
      "tool", 
      "system", 
      "study", 
      "approach", 
      "cancer diagnosis", 
      "imbalance changes", 
      "Markov model", 
      "model", 
      "prognosis", 
      "technology", 
      "measures", 
      "reasons", 
      "robustness", 
      "technique", 
      "high robustness", 
      "test", 
      "biopsy", 
      "solution", 
      "diagnosis", 
      "task", 
      "non-unique solutions", 
      "equations", 
      "linear systems"
    ], 
    "name": "Detecting copy number status and uncovering subclonal markers in heterogeneous tumor biopsies", 
    "pagination": "230", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001075625"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-12-230"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21569352"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-12-230", 
      "https://app.dimensions.ai/details/publication/pub.1001075625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-12-230"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-230'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-230'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-230'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-230'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      21 PREDICATES      133 URIs      119 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-12-230 schema:about N23f00d5334724104beaaade0191794e7
2 N31b72d1862984854886370c75ca9d2d7
3 N3e47b5738fb04dceb4999857120a8030
4 N5c49f81b05a940be9cad22250b0c5ba3
5 N5c9d1810465d4339bd660fb6edec829f
6 Nb3799c6da4cd452196e8bdbc67cff6f8
7 Nbdf1fe0a6b72450688588445f5aad685
8 Nc50d0d5bd3b24ffb94d7fe2664b18306
9 Nc67f1097c0ab4cccb984f1c7aeabf944
10 Ndd3c1b1906d54e95b3630dc32f351dc5
11 Nfc9205d5d6554d06ae144dea8e60db42
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N2c8a00b6e0444add82c408c7122a749f
15 schema:citation sg:pub.10.1038/nature06258
16 sg:pub.10.1038/nature08822
17 sg:pub.10.1038/ng.549
18 sg:pub.10.1038/ng.563
19 sg:pub.10.1038/nm1437
20 sg:pub.10.1186/gb-2009-10-3-r25
21 schema:datePublished 2011-05-11
22 schema:datePublishedReg 2011-05-11
23 schema:description BackgroundGenomic aberrations can be used to determine cancer diagnosis and prognosis. Clinically relevant novel aberrations can be discovered using high-throughput assays such as Single Nucleotide Polymorphism (SNP) arrays and next-generation sequencing, which typically provide aggregate signals of many cells at once. However, heterogeneity of tumor subclones dramatically complicates the task of detecting aberrations.ResultsThe aggregate signal of a population of subclones can be described as a linear system of equations. We employed a measure of allelic imbalance and total amount of DNA to characterize each locus by the copy number status (gain, loss or neither) of the strongest subclonal component. We designed simulated data to compare our measure to existing approaches and we analyzed SNP-arrays from 30 melanoma samples and transcriptome sequencing (RNA-Seq) from one melanoma sample.We showed that any system describing aggregate subclonal signals is underdetermined, leading to non-unique solutions for the exact copy number profile of subclones. For this reason, our illustrative measure was more robust than existing Hidden Markov Model (HMM) based tools in inferring the aberration status, as indicated by tests on simulated data. This higher robustness contributed in identifying numerous aberrations in several loci of melanoma samples. We validated the heterogeneity and aberration status within single biopsies by fluorescent in situ hybridization of four affected and transcriptionally up-regulated genes E2F8, ETV4, EZH2 and FAM84B in 11 melanoma cell lines. Heterogeneity was further demonstrated in the analysis of allelic imbalance changes along single exons from melanoma RNA-Seq.ConclusionsThese studies demonstrate how subclonal heterogeneity, prevalent in tumor samples, is reflected in aggregate signals measured by high-throughput techniques. Our proposed approach yields high robustness in detecting copy number alterations using high-throughput technologies and has the potential to identify specific subclonal markers from next-generation sequencing data.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N3549db291c2a46848c5fb284ad9caf7f
27 N88381e36f7164ae1a32f71550edf9043
28 sg:journal.1023790
29 schema:keywords ConclusionsThese studies
30 DNA
31 E2F8
32 ETV4
33 EZH2
34 FAM84B
35 Hidden Markov Model
36 Markov model
37 RNA-seq
38 SNP array
39 aberration status
40 aberrations
41 aggregate signal
42 allelic imbalance
43 alterations
44 amount
45 analysis
46 approach
47 array
48 assays
49 biopsy
50 cancer diagnosis
51 cell lines
52 cells
53 changes
54 components
55 copy number alterations
56 copy number profiles
57 copy number status
58 data
59 diagnosis
60 equations
61 exons
62 fluorescent
63 heterogeneity
64 high robustness
65 high-throughput assays
66 high-throughput techniques
67 high-throughput technologies
68 hybridization
69 illustrative measure
70 imbalance
71 imbalance changes
72 linear systems
73 lines
74 loci
75 markers
76 measures
77 melanoma cell lines
78 melanoma samples
79 model
80 next-generation sequencing
81 next-generation sequencing data
82 non-unique solutions
83 novel aberrations
84 nucleotide polymorphism array
85 number alterations
86 number profiles
87 number status
88 numerous aberrations
89 polymorphism array
90 population
91 potential
92 profile
93 prognosis
94 reasons
95 robustness
96 samples
97 sequencing
98 sequencing data
99 signals
100 single biopsy
101 single exon
102 single nucleotide polymorphism array
103 situ hybridization
104 solution
105 status
106 study
107 subclonal heterogeneity
108 subclones
109 system
110 task
111 technique
112 technology
113 test
114 tool
115 total amount
116 transcriptome sequencing
117 tumor biopsies
118 tumor samples
119 tumor subclones
120 schema:name Detecting copy number status and uncovering subclonal markers in heterogeneous tumor biopsies
121 schema:pagination 230
122 schema:productId N353af3fb09534201a212c22c89efca10
123 N8560e43b07314884ac3295198472e7ea
124 N9ee4deb808d04525a930d28f5f3051ba
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075625
126 https://doi.org/10.1186/1471-2164-12-230
127 schema:sdDatePublished 2022-10-01T06:37
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N89fd001d60214c11a635e7ecb0ada579
130 schema:url https://doi.org/10.1186/1471-2164-12-230
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N06f3b5acd8db4a5eb39ff4bc9b443fc2 rdf:first sg:person.01006374045.51
135 rdf:rest N8524f89751dd4dac86c1d1ee365d9672
136 N23f00d5334724104beaaade0191794e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Reproducibility of Results
138 rdf:type schema:DefinedTerm
139 N2c8a00b6e0444add82c408c7122a749f rdf:first sg:person.0641350013.65
140 rdf:rest Nc7ad956c744b4563b571418329d36ff0
141 N31b72d1862984854886370c75ca9d2d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Computational Biology
143 rdf:type schema:DefinedTerm
144 N353af3fb09534201a212c22c89efca10 schema:name dimensions_id
145 schema:value pub.1001075625
146 rdf:type schema:PropertyValue
147 N3549db291c2a46848c5fb284ad9caf7f schema:issueNumber 1
148 rdf:type schema:PublicationIssue
149 N3cfa022ab7e44087b23abeb2574b3e36 rdf:first sg:person.053601122.01
150 rdf:rest Na1c7c6c190ba419ea8356014e8de87ac
151 N3dc1e19dceec46d196906a2d32f942ed rdf:first sg:person.0704046703.41
152 rdf:rest N96e6c93c039746449963ccaadce149f4
153 N3e47b5738fb04dceb4999857120a8030 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Humans
155 rdf:type schema:DefinedTerm
156 N5bf05b8cb8ee4030940780905f2280a1 rdf:first sg:person.01052455262.94
157 rdf:rest N3cfa022ab7e44087b23abeb2574b3e36
158 N5c49f81b05a940be9cad22250b0c5ba3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Alleles
160 rdf:type schema:DefinedTerm
161 N5c9d1810465d4339bd660fb6edec829f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name DNA Copy Number Variations
163 rdf:type schema:DefinedTerm
164 N8524f89751dd4dac86c1d1ee365d9672 rdf:first sg:person.01137303451.71
165 rdf:rest N3dc1e19dceec46d196906a2d32f942ed
166 N8560e43b07314884ac3295198472e7ea schema:name doi
167 schema:value 10.1186/1471-2164-12-230
168 rdf:type schema:PropertyValue
169 N88381e36f7164ae1a32f71550edf9043 schema:volumeNumber 12
170 rdf:type schema:PublicationVolume
171 N89fd001d60214c11a635e7ecb0ada579 schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 N96e6c93c039746449963ccaadce149f4 rdf:first sg:person.01271010511.94
174 rdf:rest Ndd3d798b96ca428eb25a0a54747a72d0
175 N9ee4deb808d04525a930d28f5f3051ba schema:name pubmed_id
176 schema:value 21569352
177 rdf:type schema:PropertyValue
178 Na1c7c6c190ba419ea8356014e8de87ac rdf:first sg:person.0731526665.51
179 rdf:rest rdf:nil
180 Nb3799c6da4cd452196e8bdbc67cff6f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Genotype
182 rdf:type schema:DefinedTerm
183 Nbdf1fe0a6b72450688588445f5aad685 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Neoplasms
185 rdf:type schema:DefinedTerm
186 Nc50d0d5bd3b24ffb94d7fe2664b18306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Biomarkers, Tumor
188 rdf:type schema:DefinedTerm
189 Nc67f1097c0ab4cccb984f1c7aeabf944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Gene Dosage
191 rdf:type schema:DefinedTerm
192 Nc7ad956c744b4563b571418329d36ff0 rdf:first sg:person.014265505777.28
193 rdf:rest N06f3b5acd8db4a5eb39ff4bc9b443fc2
194 Ndd3c1b1906d54e95b3630dc32f351dc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Cell Line, Tumor
196 rdf:type schema:DefinedTerm
197 Ndd3d798b96ca428eb25a0a54747a72d0 rdf:first sg:person.01337123711.52
198 rdf:rest N5bf05b8cb8ee4030940780905f2280a1
199 Nfc9205d5d6554d06ae144dea8e60db42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name High-Throughput Nucleotide Sequencing
201 rdf:type schema:DefinedTerm
202 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
203 schema:name Biological Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
206 schema:name Genetics
207 rdf:type schema:DefinedTerm
208 sg:grant.2440220 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-230
209 rdf:type schema:MonetaryGrant
210 sg:journal.1023790 schema:issn 1471-2164
211 schema:name BMC Genomics
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01006374045.51 schema:affiliation grid-institutes:grid.47100.32
215 schema:familyName Narayan
216 schema:givenName Deepak
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006374045.51
218 rdf:type schema:Person
219 sg:person.01052455262.94 schema:affiliation grid-institutes:grid.47100.32
220 schema:familyName Li
221 schema:givenName Peining
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052455262.94
223 rdf:type schema:Person
224 sg:person.01137303451.71 schema:affiliation grid-institutes:grid.47100.32
225 schema:familyName Bacchiocchi
226 schema:givenName Antonella
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137303451.71
228 rdf:type schema:Person
229 sg:person.01271010511.94 schema:affiliation grid-institutes:grid.47100.32
230 schema:familyName Cheng
231 schema:givenName Elaine
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271010511.94
233 rdf:type schema:Person
234 sg:person.01337123711.52 schema:affiliation grid-institutes:grid.47100.32
235 schema:familyName Xu
236 schema:givenName Fang
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337123711.52
238 rdf:type schema:Person
239 sg:person.014265505777.28 schema:affiliation grid-institutes:grid.47100.32
240 schema:familyName Ariyan
241 schema:givenName Stephan
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265505777.28
243 rdf:type schema:Person
244 sg:person.053601122.01 schema:affiliation grid-institutes:grid.47100.32
245 schema:familyName Halaban
246 schema:givenName Ruth
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053601122.01
248 rdf:type schema:Person
249 sg:person.0641350013.65 schema:affiliation grid-institutes:grid.47100.32
250 schema:familyName Parisi
251 schema:givenName Fabio
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641350013.65
253 rdf:type schema:Person
254 sg:person.0704046703.41 schema:affiliation grid-institutes:grid.47100.32
255 schema:familyName Hoyt
256 schema:givenName Kathleen
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704046703.41
258 rdf:type schema:Person
259 sg:person.0731526665.51 schema:affiliation grid-institutes:grid.47100.32
260 schema:familyName Kluger
261 schema:givenName Yuval
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731526665.51
263 rdf:type schema:Person
264 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
265 https://doi.org/10.1038/nature06258
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/nature08822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010635813
268 https://doi.org/10.1038/nature08822
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/ng.549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031272000
271 https://doi.org/10.1038/ng.549
272 rdf:type schema:CreativeWork
273 sg:pub.10.1038/ng.563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002811063
274 https://doi.org/10.1038/ng.563
275 rdf:type schema:CreativeWork
276 sg:pub.10.1038/nm1437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021172539
277 https://doi.org/10.1038/nm1437
278 rdf:type schema:CreativeWork
279 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
280 https://doi.org/10.1186/gb-2009-10-3-r25
281 rdf:type schema:CreativeWork
282 grid-institutes:grid.47100.32 schema:alternateName Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
283 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
284 Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
285 Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
286 schema:name Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
287 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
288 Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
289 Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...