Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04-15

AUTHORS

Niina Haiminen, F Alex Feltus, Laxmi Parida

ABSTRACT

BackgroundWe investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence.ResultsThe best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most.ConclusionsBAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies. More... »

PAGES

194

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-12-194

DOI

http://dx.doi.org/10.1186/1471-2164-12-194

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008707579

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21496274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Pairing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Artificial, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomic Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, P.O. Box 218, 10598, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, P.O. Box 218, 10598, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiminen", 
        "givenName": "Niina", 
        "id": "sg:person.0746114007.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clemson University Genomics Institute, Clemson University, 29634, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Genetics & Biochemistry, Clemson University, 29634, Clemson, SC, USA", 
            "Clemson University Genomics Institute, Clemson University, 29634, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feltus", 
        "givenName": "F Alex", 
        "id": "sg:person.01152635106.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152635106.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, P.O. Box 218, 10598, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, P.O. Box 218, 10598, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature07723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020371055", 
          "https://doi.org/10.1038/nature07723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12284-009-9025-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024460736", 
          "https://doi.org/10.1007/s12284-009-9025-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046232168", 
          "https://doi.org/10.1186/1471-2164-9-404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020268444", 
          "https://doi.org/10.1186/1471-2164-7-275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005954516", 
          "https://doi.org/10.1038/nbt1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040664071", 
          "https://doi.org/10.1038/nature06148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023851661", 
          "https://doi.org/10.1186/1471-2164-10-547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034843726", 
          "https://doi.org/10.1038/nature03895"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04-15", 
    "datePublishedReg": "2011-04-15", 
    "description": "BackgroundWe investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the \"whole genome shotgun\" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence.ResultsThe best assembly quality scores were obtained using 454 coverage of 15\u00d7 linear and 5\u00d7 paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most.ConclusionsBAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-12-194", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "whole genome shotgun", 
      "genome assembly", 
      "BAC clones", 
      "genome sequence", 
      "whole genome assembly", 
      "sequence content", 
      "plant genomes", 
      "WGS assemblies", 
      "physical map", 
      "QTL intervals", 
      "candidate gene discovery", 
      "gene discovery", 
      "Mbp region", 
      "paired-end reads", 
      "whole-genome shotgun strategy", 
      "shotgun strategy", 
      "complex genomes", 
      "accurate assembly", 
      "assembly", 
      "BAC", 
      "WGS approach", 
      "silico simulations", 
      "assembly size", 
      "assembly quality", 
      "target sequence", 
      "reads", 
      "genome", 
      "pool size", 
      "sequencing", 
      "clones", 
      "sequence", 
      "shotgun", 
      "Arabidopsis", 
      "assembly score", 
      "linear read", 
      "pool", 
      "size", 
      "fragmentation", 
      "rearrangement", 
      "content", 
      "different GC", 
      "GC", 
      "scaffolds", 
      "discovery", 
      "region", 
      "approach", 
      "increase", 
      "focus", 
      "comparison", 
      "coverage", 
      "regime", 
      "results", 
      "maps", 
      "density", 
      "limitations", 
      "plate", 
      "strategies", 
      "accuracy increases", 
      "simulations", 
      "standard measures", 
      "measures", 
      "additional measures", 
      "visual comparison", 
      "quality", 
      "quality scores", 
      "linear", 
      "better results", 
      "pooling", 
      "work", 
      "applications", 
      "interval", 
      "full plate", 
      "half plate", 
      "accuracy", 
      "BackgroundWe", 
      "quality focus", 
      "scores", 
      "redundancy scores"
    ], 
    "name": "Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes", 
    "pagination": "194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008707579"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-12-194"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21496274"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-12-194", 
      "https://app.dimensions.ai/details/publication/pub.1008707579"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-12-194"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-194'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-194'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-194'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-194'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      119 URIs      103 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-12-194 schema:about N0d615f9deb16428f934535adfd27150c
2 N1675903edac6410596d34c8d188aa984
3 N3b048a4e27bb4024a9d592f2b842dbf2
4 N490c4b286c234c5c9fcd0c2c905cb7a7
5 N747d570fcfd74d5ebdf98716aef9d5bd
6 Na29b06cfd8584947973407a1e3ee0446
7 Nc2865e7f18cd415c9fc4af826287bdd6
8 Nc63ce5d8b9c242c6a22269db1e598229
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author Nf2d4f5775a8f45bbbdcaaddd9b84e9c0
12 schema:citation sg:pub.10.1007/s12284-009-9025-z
13 sg:pub.10.1038/nature03895
14 sg:pub.10.1038/nature06148
15 sg:pub.10.1038/nature07723
16 sg:pub.10.1038/nbt1486
17 sg:pub.10.1186/1471-2164-10-547
18 sg:pub.10.1186/1471-2164-7-275
19 sg:pub.10.1186/1471-2164-9-404
20 schema:datePublished 2011-04-15
21 schema:datePublishedReg 2011-04-15
22 schema:description BackgroundWe investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence.ResultsThe best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most.ConclusionsBAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N5b58b399cb714d5a8130f7fbe006818d
26 Ned3ad199509d4cd19af28e2f73dd7315
27 sg:journal.1023790
28 schema:keywords Arabidopsis
29 BAC
30 BAC clones
31 BackgroundWe
32 GC
33 Mbp region
34 QTL intervals
35 WGS approach
36 WGS assemblies
37 accuracy
38 accuracy increases
39 accurate assembly
40 additional measures
41 applications
42 approach
43 assembly
44 assembly quality
45 assembly score
46 assembly size
47 better results
48 candidate gene discovery
49 clones
50 comparison
51 complex genomes
52 content
53 coverage
54 density
55 different GC
56 discovery
57 focus
58 fragmentation
59 full plate
60 gene discovery
61 genome
62 genome assembly
63 genome sequence
64 half plate
65 increase
66 interval
67 limitations
68 linear
69 linear read
70 maps
71 measures
72 paired-end reads
73 physical map
74 plant genomes
75 plate
76 pool
77 pool size
78 pooling
79 quality
80 quality focus
81 quality scores
82 reads
83 rearrangement
84 redundancy scores
85 regime
86 region
87 results
88 scaffolds
89 scores
90 sequence
91 sequence content
92 sequencing
93 shotgun
94 shotgun strategy
95 silico simulations
96 simulations
97 size
98 standard measures
99 strategies
100 target sequence
101 visual comparison
102 whole genome assembly
103 whole genome shotgun
104 whole-genome shotgun strategy
105 work
106 schema:name Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes
107 schema:pagination 194
108 schema:productId Ne289815921e34f82ae529d18109d7ae9
109 Ne7c83686f4464bc5b62ad99e8131df6a
110 Nf3fdeaa49f594da6a9f23bc01cdbca67
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008707579
112 https://doi.org/10.1186/1471-2164-12-194
113 schema:sdDatePublished 2022-10-01T06:36
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N9a953c418f1e4ad8b6904bb87398068e
116 schema:url https://doi.org/10.1186/1471-2164-12-194
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N0d615f9deb16428f934535adfd27150c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sequence Analysis, DNA
122 rdf:type schema:DefinedTerm
123 N1675903edac6410596d34c8d188aa984 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Genomic Library
125 rdf:type schema:DefinedTerm
126 N3b048a4e27bb4024a9d592f2b842dbf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Chromosomes, Artificial, Bacterial
128 rdf:type schema:DefinedTerm
129 N490c4b286c234c5c9fcd0c2c905cb7a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Arabidopsis
131 rdf:type schema:DefinedTerm
132 N5b58b399cb714d5a8130f7fbe006818d schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 N747d570fcfd74d5ebdf98716aef9d5bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Genome, Plant
136 rdf:type schema:DefinedTerm
137 N9a953c418f1e4ad8b6904bb87398068e schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Na29b06cfd8584947973407a1e3ee0446 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Reference Standards
141 rdf:type schema:DefinedTerm
142 Nc2865e7f18cd415c9fc4af826287bdd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Genomics
144 rdf:type schema:DefinedTerm
145 Nc63ce5d8b9c242c6a22269db1e598229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Base Pairing
147 rdf:type schema:DefinedTerm
148 Ne289815921e34f82ae529d18109d7ae9 schema:name pubmed_id
149 schema:value 21496274
150 rdf:type schema:PropertyValue
151 Ne7c83686f4464bc5b62ad99e8131df6a schema:name dimensions_id
152 schema:value pub.1008707579
153 rdf:type schema:PropertyValue
154 Ned3ad199509d4cd19af28e2f73dd7315 schema:volumeNumber 12
155 rdf:type schema:PublicationVolume
156 Nef4fefa11ee040338e7c4629194d3db9 rdf:first sg:person.01152635106.32
157 rdf:rest Nf6825a0f881448ff8aaffc986c7b2adc
158 Nf2d4f5775a8f45bbbdcaaddd9b84e9c0 rdf:first sg:person.0746114007.76
159 rdf:rest Nef4fefa11ee040338e7c4629194d3db9
160 Nf3fdeaa49f594da6a9f23bc01cdbca67 schema:name doi
161 schema:value 10.1186/1471-2164-12-194
162 rdf:type schema:PropertyValue
163 Nf6825a0f881448ff8aaffc986c7b2adc rdf:first sg:person.01336557015.68
164 rdf:rest rdf:nil
165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
166 schema:name Biological Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
169 schema:name Genetics
170 rdf:type schema:DefinedTerm
171 sg:journal.1023790 schema:issn 1471-2164
172 schema:name BMC Genomics
173 schema:publisher Springer Nature
174 rdf:type schema:Periodical
175 sg:person.01152635106.32 schema:affiliation grid-institutes:grid.26090.3d
176 schema:familyName Feltus
177 schema:givenName F Alex
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152635106.32
179 rdf:type schema:Person
180 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
181 schema:familyName Parida
182 schema:givenName Laxmi
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
184 rdf:type schema:Person
185 sg:person.0746114007.76 schema:affiliation grid-institutes:grid.481554.9
186 schema:familyName Haiminen
187 schema:givenName Niina
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76
189 rdf:type schema:Person
190 sg:pub.10.1007/s12284-009-9025-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460736
191 https://doi.org/10.1007/s12284-009-9025-z
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature03895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034843726
194 https://doi.org/10.1038/nature03895
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature06148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040664071
197 https://doi.org/10.1038/nature06148
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature07723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020371055
200 https://doi.org/10.1038/nature07723
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
203 https://doi.org/10.1038/nbt1486
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2164-10-547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851661
206 https://doi.org/10.1186/1471-2164-10-547
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2164-7-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020268444
209 https://doi.org/10.1186/1471-2164-7-275
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2164-9-404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046232168
212 https://doi.org/10.1186/1471-2164-9-404
213 rdf:type schema:CreativeWork
214 grid-institutes:grid.26090.3d schema:alternateName Clemson University Genomics Institute, Clemson University, 29634, Clemson, SC, USA
215 schema:name Clemson University Genomics Institute, Clemson University, 29634, Clemson, SC, USA
216 Department of Genetics & Biochemistry, Clemson University, 29634, Clemson, SC, USA
217 rdf:type schema:Organization
218 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, P.O. Box 218, 10598, Yorktown Heights, NY, USA
219 schema:name IBM T.J. Watson Research Center, P.O. Box 218, 10598, Yorktown Heights, NY, USA
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...