Accurate and exact CNV identification from targeted high-throughput sequence data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Alex S Nord, Ming Lee, Mary-Claire King, Tom Walsh

ABSTRACT

BACKGROUND: Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data. RESULTS: Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate. CONCLUSIONS: Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner. More... »

PAGES

184

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-12-184

DOI

http://dx.doi.org/10.1186/1471-2164-12-184

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022069749

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21486468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nord", 
        "givenName": "Alex S", 
        "id": "sg:person.012327136527.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327136527.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA", 
            "Department of Medicine, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ming", 
        "id": "sg:person.015333437034.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333437034.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA", 
            "Department of Medicine, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "Mary-Claire", 
        "id": "sg:person.011423052652.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423052652.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA", 
            "Department of Medicine, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walsh", 
        "givenName": "Tom", 
        "id": "sg:person.013521445237.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521445237.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.genom.3.032802.120023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007448959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.106344.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015025184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-8-research0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015228558", 
          "https://doi.org/10.1186/gb-2001-2-8-research0032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2010.145441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016268312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019637093", 
          "https://doi.org/10.1038/nmeth.1374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019637093", 
          "https://doi.org/10.1038/nmeth.1374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024937700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025333243", 
          "https://doi.org/10.1038/nmeth.1276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092981.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029322821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-1399-9_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898645", 
          "https://doi.org/10.1007/978-1-4419-1399-9_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-1399-9_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898645", 
          "https://doi.org/10.1007/978-1-4419-1399-9_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040653661", 
          "https://doi.org/10.1038/nbt.1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1007983107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043239977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047246435", 
          "https://doi.org/10.1038/ng.128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.21221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047252450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.21221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047252450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050308784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.091827.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052032294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052442014", 
          "https://doi.org/10.1038/nature08516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052442014", 
          "https://doi.org/10.1038/nature08516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1149504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456540"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data.\nRESULTS: Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate.\nCONCLUSIONS: Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-12-184", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2482331", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2683569", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Accurate and exact CNV identification from targeted high-throughput sequence data", 
    "pagination": "184", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "692569edb580fe94ba1fe3d71662f794b56ac6ec9ab2c6ee2695abb57c6869d2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21486468"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-12-184"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022069749"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-12-184", 
      "https://app.dimensions.ai/details/publication/pub.1022069749"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-12-184"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-184'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-184'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-184'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-184'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      55 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-12-184 schema:about N13bf0fd8ce6641f1bf21b0b209145f35
2 N1922a29c684d44e0b3a3873324426047
3 Nad53f86cb1c34a71ae1824a4f594eddd
4 Nf7b8017aec7a481a9eb079977cf6106b
5 Nfdc0417f05734a08a67531af3f874c94
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N60ed48c1f57f41bbbae7ca3a6028eb4c
9 schema:citation sg:pub.10.1007/978-1-4419-1399-9_37
10 sg:pub.10.1038/nature07517
11 sg:pub.10.1038/nature08516
12 sg:pub.10.1038/nbt.1523
13 sg:pub.10.1038/ng.128
14 sg:pub.10.1038/nmeth.1276
15 sg:pub.10.1038/nmeth.1374
16 sg:pub.10.1186/gb-2001-2-8-research0032
17 https://doi.org/10.1002/humu.21221
18 https://doi.org/10.1016/s0022-2836(05)80360-2
19 https://doi.org/10.1073/pnas.1007983107
20 https://doi.org/10.1093/bioinformatics/btp324
21 https://doi.org/10.1093/bioinformatics/btq528
22 https://doi.org/10.1093/nar/gkn556
23 https://doi.org/10.1101/gr.078212.108
24 https://doi.org/10.1101/gr.091827.109
25 https://doi.org/10.1101/gr.092981.109
26 https://doi.org/10.1101/gr.106344.110
27 https://doi.org/10.1126/science.1149504
28 https://doi.org/10.1146/annurev.genom.3.032802.120023
29 https://doi.org/10.1373/clinchem.2010.145441
30 schema:datePublished 2011-12
31 schema:datePublishedReg 2011-12-01
32 schema:description BACKGROUND: Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data. RESULTS: Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate. CONCLUSIONS: Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N227a1d8212354dc7ab3c83da3dd14871
37 N541c0de7673f421884240134d1f485d0
38 sg:journal.1023790
39 schema:name Accurate and exact CNV identification from targeted high-throughput sequence data
40 schema:pagination 184
41 schema:productId N0ede94fcbbcd4e3fa36bef2ea245f633
42 N8c72e795988944cfbef96106d6f2ba39
43 N9a35d0dab5e24f8abf50a293dfa7b795
44 Na8e3b037fd584bdd91e105b5ee1bada9
45 Nf97b6b87120f4957b9c39cef5ca8bc84
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022069749
47 https://doi.org/10.1186/1471-2164-12-184
48 schema:sdDatePublished 2019-04-10T18:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N1816c3229a624f819972c4155724c455
51 schema:url http://link.springer.com/10.1186%2F1471-2164-12-184
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0ede94fcbbcd4e3fa36bef2ea245f633 schema:name doi
56 schema:value 10.1186/1471-2164-12-184
57 rdf:type schema:PropertyValue
58 N13bf0fd8ce6641f1bf21b0b209145f35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Sequence Analysis, DNA
60 rdf:type schema:DefinedTerm
61 N1816c3229a624f819972c4155724c455 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N1922a29c684d44e0b3a3873324426047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name DNA
65 rdf:type schema:DefinedTerm
66 N19328f6ddcfa4bcebc10f95991abc654 rdf:first sg:person.013521445237.26
67 rdf:rest rdf:nil
68 N227a1d8212354dc7ab3c83da3dd14871 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N541c0de7673f421884240134d1f485d0 schema:volumeNumber 12
71 rdf:type schema:PublicationVolume
72 N56b653029f9f479cade3a3a239f06d37 rdf:first sg:person.015333437034.65
73 rdf:rest Ncf9f27fad2f0409798d3e4f1de5fa0ee
74 N60ed48c1f57f41bbbae7ca3a6028eb4c rdf:first sg:person.012327136527.06
75 rdf:rest N56b653029f9f479cade3a3a239f06d37
76 N8c72e795988944cfbef96106d6f2ba39 schema:name readcube_id
77 schema:value 692569edb580fe94ba1fe3d71662f794b56ac6ec9ab2c6ee2695abb57c6869d2
78 rdf:type schema:PropertyValue
79 N9a35d0dab5e24f8abf50a293dfa7b795 schema:name dimensions_id
80 schema:value pub.1022069749
81 rdf:type schema:PropertyValue
82 Na8e3b037fd584bdd91e105b5ee1bada9 schema:name pubmed_id
83 schema:value 21486468
84 rdf:type schema:PropertyValue
85 Nad53f86cb1c34a71ae1824a4f594eddd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name High-Throughput Nucleotide Sequencing
87 rdf:type schema:DefinedTerm
88 Ncf9f27fad2f0409798d3e4f1de5fa0ee rdf:first sg:person.011423052652.23
89 rdf:rest N19328f6ddcfa4bcebc10f95991abc654
90 Nf7b8017aec7a481a9eb079977cf6106b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Databases, Genetic
92 rdf:type schema:DefinedTerm
93 Nf97b6b87120f4957b9c39cef5ca8bc84 schema:name nlm_unique_id
94 schema:value 100965258
95 rdf:type schema:PropertyValue
96 Nfdc0417f05734a08a67531af3f874c94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name DNA Copy Number Variations
98 rdf:type schema:DefinedTerm
99 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biological Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
103 schema:name Genetics
104 rdf:type schema:DefinedTerm
105 sg:grant.2482331 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-184
106 rdf:type schema:MonetaryGrant
107 sg:grant.2683569 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-184
108 rdf:type schema:MonetaryGrant
109 sg:journal.1023790 schema:issn 1471-2164
110 schema:name BMC Genomics
111 rdf:type schema:Periodical
112 sg:person.011423052652.23 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
113 schema:familyName King
114 schema:givenName Mary-Claire
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423052652.23
116 rdf:type schema:Person
117 sg:person.012327136527.06 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
118 schema:familyName Nord
119 schema:givenName Alex S
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327136527.06
121 rdf:type schema:Person
122 sg:person.013521445237.26 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
123 schema:familyName Walsh
124 schema:givenName Tom
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521445237.26
126 rdf:type schema:Person
127 sg:person.015333437034.65 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
128 schema:familyName Lee
129 schema:givenName Ming
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333437034.65
131 rdf:type schema:Person
132 sg:pub.10.1007/978-1-4419-1399-9_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898645
133 https://doi.org/10.1007/978-1-4419-1399-9_37
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
136 https://doi.org/10.1038/nature07517
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature08516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052442014
139 https://doi.org/10.1038/nature08516
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nbt.1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040653661
142 https://doi.org/10.1038/nbt.1523
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ng.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246435
145 https://doi.org/10.1038/ng.128
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
148 https://doi.org/10.1038/nmeth.1276
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nmeth.1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019637093
151 https://doi.org/10.1038/nmeth.1374
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/gb-2001-2-8-research0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015228558
154 https://doi.org/10.1186/gb-2001-2-8-research0032
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/humu.21221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047252450
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.1007983107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043239977
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/btq528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050308784
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/nar/gkn556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024937700
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1101/gr.091827.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052032294
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1101/gr.092981.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322821
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1101/gr.106344.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015025184
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1149504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456540
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1146/annurev.genom.3.032802.120023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007448959
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1373/clinchem.2010.145441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016268312
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
183 schema:name Department of Genome Sciences, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA
184 Department of Medicine, University of Washington, 1959 NE Pacific Street, 98195-7720, Seattle, WA, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...