ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Joshua WK Ho, Eric Bishop, Peter V Karchenko, Nicolas Nègre, Kevin P White, Peter J Park

ABSTRACT

BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. RESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. CONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. More... »

PAGES

134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-12-134

DOI

http://dx.doi.org/10.1186/1471-2164-12-134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038345769

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21356108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Developmental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Insect", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA Polymerase II", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Terminator Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Initiation Site", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA", 
            "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ho", 
        "givenName": "Joshua WK", 
        "id": "sg:person.016204541222.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204541222.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
            "Program in Bioinformatics, Boston University, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bishop", 
        "givenName": "Eric", 
        "id": "sg:person.01336751775.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336751775.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.2515.3", 
          "name": [
            "Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA", 
            "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
            "Informatics Program, Children's Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karchenko", 
        "givenName": "Peter V", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00e8gre", 
        "givenName": "Nicolas", 
        "id": "sg:person.01140453375.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140453375.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Kevin P", 
        "id": "sg:person.01154231246.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154231246.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.2515.3", 
          "name": [
            "Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA", 
            "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
            "Informatics Program, Children's Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Peter J", 
        "id": "sg:person.01024612701.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-11-369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001940832", 
          "https://doi.org/10.1186/1471-2105-11-369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001940832", 
          "https://doi.org/10.1186/1471-2105-11-369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144207", 
          "https://doi.org/10.1038/nmeth.1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144207", 
          "https://doi.org/10.1038/nmeth.1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008366117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010391515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011546580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012804734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601180103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013675034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(06)10015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018666342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023588367", 
          "https://doi.org/10.1186/1471-2105-8-142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-9-r137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027608848", 
          "https://doi.org/10.1186/gb-2008-9-9-r137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028515757", 
          "https://doi.org/10.1038/nbt.1508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029423567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029423567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.501108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029526406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033745816", 
          "https://doi.org/10.1186/gb-2007-8-8-r178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7080508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034914041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304799", 
          "https://doi.org/10.1038/nmeth1068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038248406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.084830.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039898401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040836033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/459927a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043448162", 
          "https://doi.org/10.1038/459927a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/459927a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043448162", 
          "https://doi.org/10.1038/459927a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5583007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044623261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-1-r7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046045266", 
          "https://doi.org/10.1186/gb-2010-11-1-r7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047083119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0905443106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048603640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048982343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0011471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049857332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050226586", 
          "https://doi.org/10.1038/nmeth.1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050226586", 
          "https://doi.org/10.1038/nmeth.1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566307", 
          "https://doi.org/10.1186/1471-2164-10-618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051483764", 
          "https://doi.org/10.1038/nbt.1505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052955805", 
          "https://doi.org/10.1038/nbt.1518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1183621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461349"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster.\nRESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis.\nCONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-12-134", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691237", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2669764", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691234", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2669725", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis", 
    "pagination": "134", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6aa336dc63ae542d33334c7bed64daf9371424863a852528b41acc7c9df2282"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21356108"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-12-134"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038345769"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-12-134", 
      "https://app.dimensions.ai/details/publication/pub.1038345769"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-12-134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'


 

This table displays all metadata directly associated to this object as RDF triples.

312 TRIPLES      21 PREDICATES      81 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-12-134 schema:about N004a4b09f13c470ebe0b8c39a0f0a684
2 N038a3d0830d747e0b38493fcb1621da5
3 N2f766554b3204f769557987f5e6e7f50
4 N335b479b500248b5898de51f49453df1
5 N33a405e4ffc942d2abc4fb010d1f04f1
6 N489bac0f4d28440aaa720877f4b13220
7 N4961a113d16643cda51217db7dc5de6f
8 N4ec453e9ce0244f28944451d44688a61
9 N946021ee10ab476d97fa9a30175c72e0
10 Na4643f366f2f42988e25c98c172c0ae2
11 Na5d34ace73a94888a9eb6b3b6390874f
12 Nb579206e508b40e49f17e977ce3213b2
13 Nbd2288c2b949433193de078a2b2b9941
14 Nc4c842e880854404b4dc6e7c804f0811
15 Nce29613265b04bd1875b470bda11b7ce
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N8e2e9a77dc984a42a7452bfa349c5876
19 schema:citation sg:pub.10.1038/459927a
20 sg:pub.10.1038/nature07829
21 sg:pub.10.1038/nbt.1505
22 sg:pub.10.1038/nbt.1508
23 sg:pub.10.1038/nbt.1518
24 sg:pub.10.1038/nbt1233
25 sg:pub.10.1038/nmeth.1404
26 sg:pub.10.1038/nmeth.1478
27 sg:pub.10.1038/nmeth1068
28 sg:pub.10.1038/nrg2641
29 sg:pub.10.1186/1471-2105-11-369
30 sg:pub.10.1186/1471-2105-8-142
31 sg:pub.10.1186/1471-2164-10-618
32 sg:pub.10.1186/gb-2007-8-8-r178
33 sg:pub.10.1186/gb-2008-9-9-r137
34 sg:pub.10.1186/gb-2009-10-3-r25
35 sg:pub.10.1186/gb-2010-11-1-r7
36 https://doi.org/10.1016/j.cell.2007.05.009
37 https://doi.org/10.1016/j.cell.2008.04.043
38 https://doi.org/10.1016/s0076-6879(06)10015-4
39 https://doi.org/10.1073/pnas.0601180103
40 https://doi.org/10.1073/pnas.0905443106
41 https://doi.org/10.1093/bioinformatics/btp472
42 https://doi.org/10.1093/bioinformatics/btq023
43 https://doi.org/10.1093/bioinformatics/btq248
44 https://doi.org/10.1093/nar/gki046
45 https://doi.org/10.1101/gad.501108
46 https://doi.org/10.1101/gr.084830.108
47 https://doi.org/10.1101/gr.5583007
48 https://doi.org/10.1101/gr.7080508
49 https://doi.org/10.1126/science.1075090
50 https://doi.org/10.1126/science.1183621
51 https://doi.org/10.1126/science.1184655
52 https://doi.org/10.1126/science.290.5500.2306
53 https://doi.org/10.1371/journal.pone.0005241
54 https://doi.org/10.1371/journal.pone.0006700
55 https://doi.org/10.1371/journal.pone.0011471
56 schema:datePublished 2011-12
57 schema:datePublishedReg 2011-12-01
58 schema:description BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. RESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. CONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N341877262f0746ca9deca1971590ba66
63 Nd1e02f0f3346459aa5dbe61fc4a0a39c
64 sg:journal.1023790
65 schema:name ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
66 schema:pagination 134
67 schema:productId N128c9ad103cd4570899cf17a7faafd31
68 N410cc16bbe17457fadc8037086bf15b4
69 N9121b96e743e4cd884b23122ac8fcd82
70 Na62c45dec89041ad8a3c8f043f1f2c47
71 Nd26e5d6837374f03bb705fbcfeea9e5b
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345769
73 https://doi.org/10.1186/1471-2164-12-134
74 schema:sdDatePublished 2019-04-10T15:50
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N68f1fdfb91dc447f856469e78a97bb90
77 schema:url http://link.springer.com/10.1186%2F1471-2164-12-134
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N004a4b09f13c470ebe0b8c39a0f0a684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Gene Library
83 rdf:type schema:DefinedTerm
84 N038a3d0830d747e0b38493fcb1621da5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Gene Expression Regulation, Developmental
86 rdf:type schema:DefinedTerm
87 N128c9ad103cd4570899cf17a7faafd31 schema:name readcube_id
88 schema:value b6aa336dc63ae542d33334c7bed64daf9371424863a852528b41acc7c9df2282
89 rdf:type schema:PropertyValue
90 N2f766554b3204f769557987f5e6e7f50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Genome, Insect
92 rdf:type schema:DefinedTerm
93 N335b479b500248b5898de51f49453df1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Algorithms
95 rdf:type schema:DefinedTerm
96 N33a405e4ffc942d2abc4fb010d1f04f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Oligonucleotide Array Sequence Analysis
98 rdf:type schema:DefinedTerm
99 N341877262f0746ca9deca1971590ba66 schema:volumeNumber 12
100 rdf:type schema:PublicationVolume
101 N410cc16bbe17457fadc8037086bf15b4 schema:name dimensions_id
102 schema:value pub.1038345769
103 rdf:type schema:PropertyValue
104 N489bac0f4d28440aaa720877f4b13220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Transcription Initiation Site
106 rdf:type schema:DefinedTerm
107 N4961a113d16643cda51217db7dc5de6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Gene Expression Profiling
109 rdf:type schema:DefinedTerm
110 N4c29367e9c9145bea8f13b8261df7c38 rdf:first sg:person.01024612701.33
111 rdf:rest rdf:nil
112 N4ec453e9ce0244f28944451d44688a61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Animals
114 rdf:type schema:DefinedTerm
115 N68f1fdfb91dc447f856469e78a97bb90 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N6d444d9880ff458b991b1847a8e3972e schema:name Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
118 rdf:type schema:Organization
119 N878db7eb50c647a9871c920ff8745510 rdf:first sg:person.01140453375.01
120 rdf:rest Nd5c6ce3c81f141b08232c229f8f54054
121 N8e2e9a77dc984a42a7452bfa349c5876 rdf:first sg:person.016204541222.29
122 rdf:rest Na5e69f63458042668fff9ac2fc05e21c
123 N9121b96e743e4cd884b23122ac8fcd82 schema:name pubmed_id
124 schema:value 21356108
125 rdf:type schema:PropertyValue
126 N946021ee10ab476d97fa9a30175c72e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Drosophila melanogaster
128 rdf:type schema:DefinedTerm
129 Na4643f366f2f42988e25c98c172c0ae2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Chromatin Immunoprecipitation
131 rdf:type schema:DefinedTerm
132 Na5d34ace73a94888a9eb6b3b6390874f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Terminator Regions, Genetic
134 rdf:type schema:DefinedTerm
135 Na5e69f63458042668fff9ac2fc05e21c rdf:first sg:person.01336751775.11
136 rdf:rest Nec02a71496dd4041897ea2b93b5201ce
137 Na62c45dec89041ad8a3c8f043f1f2c47 schema:name doi
138 schema:value 10.1186/1471-2164-12-134
139 rdf:type schema:PropertyValue
140 Nb579206e508b40e49f17e977ce3213b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name RNA Polymerase II
142 rdf:type schema:DefinedTerm
143 Nbd2288c2b949433193de078a2b2b9941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Reproducibility of Results
145 rdf:type schema:DefinedTerm
146 Nc4c842e880854404b4dc6e7c804f0811 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Histones
148 rdf:type schema:DefinedTerm
149 Nce29613265b04bd1875b470bda11b7ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Sequence Analysis, DNA
151 rdf:type schema:DefinedTerm
152 Nd1e02f0f3346459aa5dbe61fc4a0a39c schema:issueNumber 1
153 rdf:type schema:PublicationIssue
154 Nd26e5d6837374f03bb705fbcfeea9e5b schema:name nlm_unique_id
155 schema:value 100965258
156 rdf:type schema:PropertyValue
157 Nd5c6ce3c81f141b08232c229f8f54054 rdf:first sg:person.01154231246.74
158 rdf:rest N4c29367e9c9145bea8f13b8261df7c38
159 Ne1e9846c61304ee7a37ae74535105c0b schema:affiliation https://www.grid.ac/institutes/grid.2515.3
160 schema:familyName Karchenko
161 schema:givenName Peter V
162 rdf:type schema:Person
163 Nebb7057d80fe4cbfae61e5dfea9e6112 schema:name Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
164 rdf:type schema:Organization
165 Nec02a71496dd4041897ea2b93b5201ce rdf:first Ne1e9846c61304ee7a37ae74535105c0b
166 rdf:rest N878db7eb50c647a9871c920ff8745510
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
171 schema:name Genetics
172 rdf:type schema:DefinedTerm
173 sg:grant.2669725 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
174 rdf:type schema:MonetaryGrant
175 sg:grant.2669764 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
176 rdf:type schema:MonetaryGrant
177 sg:grant.2691234 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
178 rdf:type schema:MonetaryGrant
179 sg:grant.2691237 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
180 rdf:type schema:MonetaryGrant
181 sg:journal.1023790 schema:issn 1471-2164
182 schema:name BMC Genomics
183 rdf:type schema:Periodical
184 sg:person.01024612701.33 schema:affiliation https://www.grid.ac/institutes/grid.2515.3
185 schema:familyName Park
186 schema:givenName Peter J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
188 rdf:type schema:Person
189 sg:person.01140453375.01 schema:affiliation N6d444d9880ff458b991b1847a8e3972e
190 schema:familyName Nègre
191 schema:givenName Nicolas
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140453375.01
193 rdf:type schema:Person
194 sg:person.01154231246.74 schema:affiliation Nebb7057d80fe4cbfae61e5dfea9e6112
195 schema:familyName White
196 schema:givenName Kevin P
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154231246.74
198 rdf:type schema:Person
199 sg:person.01336751775.11 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
200 schema:familyName Bishop
201 schema:givenName Eric
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336751775.11
203 rdf:type schema:Person
204 sg:person.016204541222.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
205 schema:familyName Ho
206 schema:givenName Joshua WK
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204541222.29
208 rdf:type schema:Person
209 sg:pub.10.1038/459927a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043448162
210 https://doi.org/10.1038/459927a
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
213 https://doi.org/10.1038/nature07829
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nbt.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051483764
216 https://doi.org/10.1038/nbt.1505
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nbt.1508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028515757
219 https://doi.org/10.1038/nbt.1508
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nbt.1518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955805
222 https://doi.org/10.1038/nbt.1518
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nbt1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382107
225 https://doi.org/10.1038/nbt1233
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nmeth.1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144207
228 https://doi.org/10.1038/nmeth.1404
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nmeth.1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050226586
231 https://doi.org/10.1038/nmeth.1478
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
234 https://doi.org/10.1038/nmeth1068
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrg2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006115199
237 https://doi.org/10.1038/nrg2641
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1471-2105-11-369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001940832
240 https://doi.org/10.1186/1471-2105-11-369
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1471-2105-8-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023588367
243 https://doi.org/10.1186/1471-2105-8-142
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1471-2164-10-618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566307
246 https://doi.org/10.1186/1471-2164-10-618
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/gb-2007-8-8-r178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033745816
249 https://doi.org/10.1186/gb-2007-8-8-r178
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/gb-2008-9-9-r137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027608848
252 https://doi.org/10.1186/gb-2008-9-9-r137
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
255 https://doi.org/10.1186/gb-2009-10-3-r25
256 rdf:type schema:CreativeWork
257 sg:pub.10.1186/gb-2010-11-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046045266
258 https://doi.org/10.1186/gb-2010-11-1-r7
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.cell.2008.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011546580
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0076-6879(06)10015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018666342
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1073/pnas.0601180103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013675034
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1073/pnas.0905443106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603640
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/bioinformatics/btp472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038248406
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/bioinformatics/btq023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010391515
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/bioinformatics/btq248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012804734
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/nar/gki046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008366117
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1101/gad.501108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029526406
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1101/gr.084830.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898401
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1101/gr.5583007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623261
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1101/gr.7080508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034914041
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.1183621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461349
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.1184655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029423567
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.290.5500.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040836033
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1371/journal.pone.0005241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048982343
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1371/journal.pone.0006700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047083119
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pone.0011471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857332
299 rdf:type schema:CreativeWork
300 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
301 schema:name Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
302 Program in Bioinformatics, Boston University, Boston, MA, USA
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.2515.3 schema:alternateName Boston Children's Hospital
305 schema:name Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
306 Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
307 Informatics Program, Children's Hospital, Boston, MA, USA
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
310 schema:name Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
311 Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
312 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...