ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Joshua WK Ho, Eric Bishop, Peter V Karchenko, Nicolas Nègre, Kevin P White, Peter J Park

ABSTRACT

BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. RESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. CONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. More... »

PAGES

134

References to SciGraph publications

  • 2007-08. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing in NATURE METHODS
  • 2008-11. An integrated software system for analyzing ChIP-chip and ChIP-seq data in NATURE BIOTECHNOLOGY
  • 2008-11. Model-based Analysis of ChIP-Seq (MACS) in GENOME BIOLOGY
  • 2010-01. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA in NATURE METHODS
  • 2006-08. High-resolution computational models of genome binding events in NATURE BIOTECHNOLOGY
  • 2008-12. Design and analysis of ChIP-seq experiments for DNA-binding proteins in NATURE BIOTECHNOLOGY
  • 2009-01. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls in NATURE BIOTECHNOLOGY
  • 2010-12. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data in BMC BIOINFORMATICS
  • 2009-12. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments in BMC GENOMICS
  • 2009-05. Histone modifications at human enhancers reflect global cell-type-specific gene expression in NATURE
  • 2010-01. Genome-wide prediction of transcription factor binding sites using an integrated model in GENOME BIOLOGY
  • 2007-12. Pre-processing Agilent microarray data in BMC BIOINFORMATICS
  • 2010-08. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors in NATURE METHODS
  • 2009-03. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2009-06. Unlocking the secrets of the genome in NATURE
  • 2009-10. ChIP–seq: advantages and challenges of a maturing technology in NATURE REVIEWS GENETICS
  • 2007-08. Model-based analysis of two-color arrays (MA2C) in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-12-134

    DOI

    http://dx.doi.org/10.1186/1471-2164-12-134

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038345769

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21356108


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin Immunoprecipitation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Developmental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA Polymerase II", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Terminator Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Initiation Site", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA", 
                "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ho", 
            "givenName": "Joshua WK", 
            "id": "sg:person.016204541222.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204541222.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
                "Program in Bioinformatics, Boston University, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bishop", 
            "givenName": "Eric", 
            "id": "sg:person.01336751775.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336751775.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston Children's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.2515.3", 
              "name": [
                "Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA", 
                "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
                "Informatics Program, Children's Hospital, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karchenko", 
            "givenName": "Peter V", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "N\u00e8gre", 
            "givenName": "Nicolas", 
            "id": "sg:person.01140453375.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140453375.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "White", 
            "givenName": "Kevin P", 
            "id": "sg:person.01154231246.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154231246.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston Children's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.2515.3", 
              "name": [
                "Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA", 
                "Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
                "Informatics Program, Children's Hospital, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Peter J", 
            "id": "sg:person.01024612701.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-11-369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001940832", 
              "https://doi.org/10.1186/1471-2105-11-369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001940832", 
              "https://doi.org/10.1186/1471-2105-11-369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1075090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001953109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002144207", 
              "https://doi.org/10.1038/nmeth.1404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002144207", 
              "https://doi.org/10.1038/nmeth.1404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006115199", 
              "https://doi.org/10.1038/nrg2641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006115199", 
              "https://doi.org/10.1038/nrg2641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008366117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010391515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2008.04.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011546580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012804734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0601180103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013675034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(06)10015-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018666342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023588367", 
              "https://doi.org/10.1186/1471-2105-8-142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938796", 
              "https://doi.org/10.1038/nature07829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938796", 
              "https://doi.org/10.1038/nature07829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-9-r137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027608848", 
              "https://doi.org/10.1186/gb-2008-9-9-r137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028515757", 
              "https://doi.org/10.1038/nbt.1508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1184655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029423567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1184655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029423567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.501108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029526406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-8-r178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033745816", 
              "https://doi.org/10.1186/gb-2007-8-8-r178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.7080508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034914041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036304799", 
              "https://doi.org/10.1038/nmeth1068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038248406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.084830.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039898401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.290.5500.2306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040836033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/459927a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043448162", 
              "https://doi.org/10.1038/459927a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/459927a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043448162", 
              "https://doi.org/10.1038/459927a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.5583007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044623261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-1-r7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046045266", 
              "https://doi.org/10.1186/gb-2010-11-1-r7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0006700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047083119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0905443106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048603640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0005241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048982343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049382107", 
              "https://doi.org/10.1038/nbt1233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049382107", 
              "https://doi.org/10.1038/nbt1233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0011471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049857332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050226586", 
              "https://doi.org/10.1038/nmeth.1478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050226586", 
              "https://doi.org/10.1038/nmeth.1478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050566307", 
              "https://doi.org/10.1186/1471-2164-10-618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051483764", 
              "https://doi.org/10.1038/nbt.1505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052955805", 
              "https://doi.org/10.1038/nbt.1518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1183621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461349"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster.\nRESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis.\nCONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2164-12-134", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2691237", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2669764", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2691234", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2669725", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis", 
        "pagination": "134", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b6aa336dc63ae542d33334c7bed64daf9371424863a852528b41acc7c9df2282"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21356108"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-12-134"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038345769"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-12-134", 
          "https://app.dimensions.ai/details/publication/pub.1038345769"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2164-12-134"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-134'


     

    This table displays all metadata directly associated to this object as RDF triples.

    312 TRIPLES      21 PREDICATES      81 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-12-134 schema:about N27cb9a3775b0485fb190199265fe848f
    2 N3f4ebc9d3b464485b1a92ece9a8610a5
    3 N4ed3231594d6489daf747b65cbc6b216
    4 N5111fab9d72547468015d2824890fa33
    5 N5edef98ced5e4da3878af53f630f3a65
    6 N74b83ab5b6d8403aba4efe3378cc702b
    7 N960c2f1095ec415ab9d337dbd8e1722d
    8 Na52b165baaf840ebbc1cb55032548f7d
    9 Nacdbbbd507a14b518634fcb2d99433d3
    10 Nb00f45aabd704a79b49b7b066583ec32
    11 Ncf4214a9a53744e09ab950d339549867
    12 Nd6c6cb04eeac4d8f992784e71f2f3d1f
    13 Ndbb8b7ea523f43f1adcf47bdc816973a
    14 Ne593517f978a441983093f4a468035fd
    15 Nfebe785e5b794ab3972e86e1fef250f1
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author Ndc014b7d69e34727949dd43f4900dd93
    19 schema:citation sg:pub.10.1038/459927a
    20 sg:pub.10.1038/nature07829
    21 sg:pub.10.1038/nbt.1505
    22 sg:pub.10.1038/nbt.1508
    23 sg:pub.10.1038/nbt.1518
    24 sg:pub.10.1038/nbt1233
    25 sg:pub.10.1038/nmeth.1404
    26 sg:pub.10.1038/nmeth.1478
    27 sg:pub.10.1038/nmeth1068
    28 sg:pub.10.1038/nrg2641
    29 sg:pub.10.1186/1471-2105-11-369
    30 sg:pub.10.1186/1471-2105-8-142
    31 sg:pub.10.1186/1471-2164-10-618
    32 sg:pub.10.1186/gb-2007-8-8-r178
    33 sg:pub.10.1186/gb-2008-9-9-r137
    34 sg:pub.10.1186/gb-2009-10-3-r25
    35 sg:pub.10.1186/gb-2010-11-1-r7
    36 https://doi.org/10.1016/j.cell.2007.05.009
    37 https://doi.org/10.1016/j.cell.2008.04.043
    38 https://doi.org/10.1016/s0076-6879(06)10015-4
    39 https://doi.org/10.1073/pnas.0601180103
    40 https://doi.org/10.1073/pnas.0905443106
    41 https://doi.org/10.1093/bioinformatics/btp472
    42 https://doi.org/10.1093/bioinformatics/btq023
    43 https://doi.org/10.1093/bioinformatics/btq248
    44 https://doi.org/10.1093/nar/gki046
    45 https://doi.org/10.1101/gad.501108
    46 https://doi.org/10.1101/gr.084830.108
    47 https://doi.org/10.1101/gr.5583007
    48 https://doi.org/10.1101/gr.7080508
    49 https://doi.org/10.1126/science.1075090
    50 https://doi.org/10.1126/science.1183621
    51 https://doi.org/10.1126/science.1184655
    52 https://doi.org/10.1126/science.290.5500.2306
    53 https://doi.org/10.1371/journal.pone.0005241
    54 https://doi.org/10.1371/journal.pone.0006700
    55 https://doi.org/10.1371/journal.pone.0011471
    56 schema:datePublished 2011-12
    57 schema:datePublishedReg 2011-12-01
    58 schema:description BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. RESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. CONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree true
    62 schema:isPartOf N65a04f999fe14985abb194160adc77b2
    63 Nf717eaaa9cfb4e71ba907f6dbe8509b6
    64 sg:journal.1023790
    65 schema:name ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
    66 schema:pagination 134
    67 schema:productId N33e7ae5bbab24bbcbaa43cf50efe2b23
    68 Na264be6292cf416888e40262f8256826
    69 Naccd9ea0375d4286b8e6aba7f7717c84
    70 Nd2353a3b0c4b443aa0b7ab4c61af501a
    71 Nfaa49ef7e5c249d5bdcb7f1083ef4400
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345769
    73 https://doi.org/10.1186/1471-2164-12-134
    74 schema:sdDatePublished 2019-04-10T15:50
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Nd68f0588a0e54ce6a26991ff44748db2
    77 schema:url http://link.springer.com/10.1186%2F1471-2164-12-134
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N04ab47b6895044a89722d2b536fc67d7 rdf:first sg:person.01024612701.33
    82 rdf:rest rdf:nil
    83 N0a4c6041243f49e2b00bbc04d7bb0e83 schema:name Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
    84 rdf:type schema:Organization
    85 N0af0f8605abf4df49ae32cd33745d389 schema:name Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
    86 rdf:type schema:Organization
    87 N27cb9a3775b0485fb190199265fe848f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Animals
    89 rdf:type schema:DefinedTerm
    90 N33e7ae5bbab24bbcbaa43cf50efe2b23 schema:name doi
    91 schema:value 10.1186/1471-2164-12-134
    92 rdf:type schema:PropertyValue
    93 N3f4ebc9d3b464485b1a92ece9a8610a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Algorithms
    95 rdf:type schema:DefinedTerm
    96 N4d70e6fd104f45cda100d7b824b3aa75 rdf:first sg:person.01336751775.11
    97 rdf:rest Nc05acb4657cd4b2986f7a64c6123e0ca
    98 N4ed3231594d6489daf747b65cbc6b216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Transcription Initiation Site
    100 rdf:type schema:DefinedTerm
    101 N5111fab9d72547468015d2824890fa33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Reproducibility of Results
    103 rdf:type schema:DefinedTerm
    104 N5edef98ced5e4da3878af53f630f3a65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Terminator Regions, Genetic
    106 rdf:type schema:DefinedTerm
    107 N65a04f999fe14985abb194160adc77b2 schema:issueNumber 1
    108 rdf:type schema:PublicationIssue
    109 N74b83ab5b6d8403aba4efe3378cc702b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Sequence Analysis, DNA
    111 rdf:type schema:DefinedTerm
    112 N960c2f1095ec415ab9d337dbd8e1722d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Oligonucleotide Array Sequence Analysis
    114 rdf:type schema:DefinedTerm
    115 N96eddb644b8d41ba93deba34131c814b schema:affiliation https://www.grid.ac/institutes/grid.2515.3
    116 schema:familyName Karchenko
    117 schema:givenName Peter V
    118 rdf:type schema:Person
    119 Na264be6292cf416888e40262f8256826 schema:name nlm_unique_id
    120 schema:value 100965258
    121 rdf:type schema:PropertyValue
    122 Na52b165baaf840ebbc1cb55032548f7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Gene Expression Regulation, Developmental
    124 rdf:type schema:DefinedTerm
    125 Naccd9ea0375d4286b8e6aba7f7717c84 schema:name dimensions_id
    126 schema:value pub.1038345769
    127 rdf:type schema:PropertyValue
    128 Nacdbbbd507a14b518634fcb2d99433d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Gene Library
    130 rdf:type schema:DefinedTerm
    131 Nb00f45aabd704a79b49b7b066583ec32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name RNA Polymerase II
    133 rdf:type schema:DefinedTerm
    134 Nc05acb4657cd4b2986f7a64c6123e0ca rdf:first N96eddb644b8d41ba93deba34131c814b
    135 rdf:rest Nc7105fd68de04772944eaf7daaca6bad
    136 Nc7105fd68de04772944eaf7daaca6bad rdf:first sg:person.01140453375.01
    137 rdf:rest Ne44841c41fa24ca0ba25d642f757f9b6
    138 Ncf4214a9a53744e09ab950d339549867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Drosophila melanogaster
    140 rdf:type schema:DefinedTerm
    141 Nd2353a3b0c4b443aa0b7ab4c61af501a schema:name readcube_id
    142 schema:value b6aa336dc63ae542d33334c7bed64daf9371424863a852528b41acc7c9df2282
    143 rdf:type schema:PropertyValue
    144 Nd68f0588a0e54ce6a26991ff44748db2 schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 Nd6c6cb04eeac4d8f992784e71f2f3d1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Histones
    148 rdf:type schema:DefinedTerm
    149 Ndbb8b7ea523f43f1adcf47bdc816973a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Chromatin Immunoprecipitation
    151 rdf:type schema:DefinedTerm
    152 Ndc014b7d69e34727949dd43f4900dd93 rdf:first sg:person.016204541222.29
    153 rdf:rest N4d70e6fd104f45cda100d7b824b3aa75
    154 Ne44841c41fa24ca0ba25d642f757f9b6 rdf:first sg:person.01154231246.74
    155 rdf:rest N04ab47b6895044a89722d2b536fc67d7
    156 Ne593517f978a441983093f4a468035fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Genome, Insect
    158 rdf:type schema:DefinedTerm
    159 Nf717eaaa9cfb4e71ba907f6dbe8509b6 schema:volumeNumber 12
    160 rdf:type schema:PublicationVolume
    161 Nfaa49ef7e5c249d5bdcb7f1083ef4400 schema:name pubmed_id
    162 schema:value 21356108
    163 rdf:type schema:PropertyValue
    164 Nfebe785e5b794ab3972e86e1fef250f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Gene Expression Profiling
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Biological Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Genetics
    172 rdf:type schema:DefinedTerm
    173 sg:grant.2669725 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
    174 rdf:type schema:MonetaryGrant
    175 sg:grant.2669764 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
    176 rdf:type schema:MonetaryGrant
    177 sg:grant.2691234 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
    178 rdf:type schema:MonetaryGrant
    179 sg:grant.2691237 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-12-134
    180 rdf:type schema:MonetaryGrant
    181 sg:journal.1023790 schema:issn 1471-2164
    182 schema:name BMC Genomics
    183 rdf:type schema:Periodical
    184 sg:person.01024612701.33 schema:affiliation https://www.grid.ac/institutes/grid.2515.3
    185 schema:familyName Park
    186 schema:givenName Peter J
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
    188 rdf:type schema:Person
    189 sg:person.01140453375.01 schema:affiliation N0af0f8605abf4df49ae32cd33745d389
    190 schema:familyName Nègre
    191 schema:givenName Nicolas
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140453375.01
    193 rdf:type schema:Person
    194 sg:person.01154231246.74 schema:affiliation N0a4c6041243f49e2b00bbc04d7bb0e83
    195 schema:familyName White
    196 schema:givenName Kevin P
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154231246.74
    198 rdf:type schema:Person
    199 sg:person.01336751775.11 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    200 schema:familyName Bishop
    201 schema:givenName Eric
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336751775.11
    203 rdf:type schema:Person
    204 sg:person.016204541222.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    205 schema:familyName Ho
    206 schema:givenName Joshua WK
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204541222.29
    208 rdf:type schema:Person
    209 sg:pub.10.1038/459927a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043448162
    210 https://doi.org/10.1038/459927a
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
    213 https://doi.org/10.1038/nature07829
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nbt.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051483764
    216 https://doi.org/10.1038/nbt.1505
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nbt.1508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028515757
    219 https://doi.org/10.1038/nbt.1508
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nbt.1518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955805
    222 https://doi.org/10.1038/nbt.1518
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nbt1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382107
    225 https://doi.org/10.1038/nbt1233
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nmeth.1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144207
    228 https://doi.org/10.1038/nmeth.1404
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nmeth.1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050226586
    231 https://doi.org/10.1038/nmeth.1478
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
    234 https://doi.org/10.1038/nmeth1068
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nrg2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006115199
    237 https://doi.org/10.1038/nrg2641
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/1471-2105-11-369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001940832
    240 https://doi.org/10.1186/1471-2105-11-369
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1471-2105-8-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023588367
    243 https://doi.org/10.1186/1471-2105-8-142
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/1471-2164-10-618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566307
    246 https://doi.org/10.1186/1471-2164-10-618
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/gb-2007-8-8-r178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033745816
    249 https://doi.org/10.1186/gb-2007-8-8-r178
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/gb-2008-9-9-r137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027608848
    252 https://doi.org/10.1186/gb-2008-9-9-r137
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    255 https://doi.org/10.1186/gb-2009-10-3-r25
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/gb-2010-11-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046045266
    258 https://doi.org/10.1186/gb-2010-11-1-r7
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1016/j.cell.2008.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011546580
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/s0076-6879(06)10015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018666342
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1073/pnas.0601180103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013675034
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1073/pnas.0905443106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603640
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/bioinformatics/btp472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038248406
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1093/bioinformatics/btq023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010391515
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1093/bioinformatics/btq248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012804734
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1093/nar/gki046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008366117
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1101/gad.501108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029526406
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1101/gr.084830.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898401
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1101/gr.5583007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623261
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1101/gr.7080508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034914041
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1126/science.1183621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461349
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1126/science.1184655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029423567
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1126/science.290.5500.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040836033
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1371/journal.pone.0005241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048982343
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1371/journal.pone.0006700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047083119
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1371/journal.pone.0011471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857332
    299 rdf:type schema:CreativeWork
    300 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
    301 schema:name Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
    302 Program in Bioinformatics, Boston University, Boston, MA, USA
    303 rdf:type schema:Organization
    304 https://www.grid.ac/institutes/grid.2515.3 schema:alternateName Boston Children's Hospital
    305 schema:name Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
    306 Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
    307 Informatics Program, Children's Hospital, Boston, MA, USA
    308 rdf:type schema:Organization
    309 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    310 schema:name Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
    311 Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
    312 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...