The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-06

AUTHORS

Xuefeng Fang, Jae-Geun Yoon, Lisha Li, Wei Yu, Jiaofang Shao, Dasong Hua, Shu Zheng, Leroy Hood, David R Goodlett, Gregory Foltz, Biaoyang Lin

ABSTRACT

BackgroundSOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined.ResultsWe show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.ConclusionsWe present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community. More... »

PAGES

11

References to SciGraph publications

  • 2009-08-06. Correlation of CD133, OCT4, and SOX2 in Rectal Cancer and Their Association with Distant Recurrence After Chemoradiotherapy in ANNALS OF SURGICAL ONCOLOGY
  • 2008-12-01. Sox18 induces development of the lymphatic vasculature in mice in NATURE
  • 2009-10-12. miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression in BMC BIOINFORMATICS
  • 2010-06-29. The functional significance of microRNA-145 in prostate cancer in BRITISH JOURNAL OF CANCER
  • 2009-10-13. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex in CELL RESEARCH
  • 2009-10-20. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer in BMC CANCER
  • 2003-09-28. Vertebrate neurogenesis is counteracted by Sox1–3 activity in NATURE NEUROSCIENCE
  • 2007-03-20. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy in BRITISH JOURNAL OF CANCER
  • 2008-04-28. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors in NATURE GENETICS
  • 2005-07-05. High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID) in BMC BIOINFORMATICS
  • 2007-03-02. Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer in MODERN PATHOLOGY
  • 2010-05-31. Preparation and Analysis of MicroRNA Libraries Using the Illumina Massively Parallel Sequencing Technology in RNAI AND MICRORNA-MEDIATED GENE REGULATION IN STEM CELLS
  • 2010-04-01. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2 in NATURE PROTOCOLS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-12-11

    DOI

    http://dx.doi.org/10.1186/1471-2164-12-11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014405053

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21211035


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin Immunoprecipitation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glioblastoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "SOXB1 Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Medicinal Chemistry, University of Washington, BOX 367610, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA", 
                "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China", 
                "Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, PR, China", 
                "Department of Medicinal Chemistry, University of Washington, BOX 367610, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fang", 
            "givenName": "Xuefeng", 
            "id": "sg:person.01240556337.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240556337.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.281044.b", 
              "name": [
                "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoon", 
            "givenName": "Jae-Geun", 
            "id": "sg:person.01274324422.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274324422.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Lisha", 
            "id": "sg:person.01240120235.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240120235.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Wei", 
            "id": "sg:person.01211172103.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211172103.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Jiaofang", 
            "id": "sg:person.01074401324.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074401324.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hua", 
            "givenName": "Dasong", 
            "id": "sg:person.0732332471.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732332471.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, PR, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, PR, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Shu", 
            "id": "sg:person.07761572767.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07761572767.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Institute for Systems Biology, 98103, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "The Institute for Systems Biology, 98103, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hood", 
            "givenName": "Leroy", 
            "id": "sg:person.016174641237.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174641237.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicinal Chemistry, University of Washington, BOX 367610, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Medicinal Chemistry, University of Washington, BOX 367610, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goodlett", 
            "givenName": "David R", 
            "id": "sg:person.01044126157.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.281044.b", 
              "name": [
                "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foltz", 
            "givenName": "Gregory", 
            "id": "sg:person.0666412523.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666412523.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Urology, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA", 
                "Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China", 
                "Department of Urology, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Biaoyang", 
            "id": "sg:person.0714017564.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714017564.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-10-328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013410347", 
              "https://doi.org/10.1186/1471-2105-10-328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6603696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049722417", 
              "https://doi.org/10.1038/sj.bjc.6603696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020336466", 
              "https://doi.org/10.1038/nn1131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035841380", 
              "https://doi.org/10.1038/nprot.2010.16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-9-374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046756579", 
              "https://doi.org/10.1186/1471-2407-9-374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-009-0617-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024261193", 
              "https://doi.org/10.1245/s10434-009-0617-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.3800760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020957401", 
              "https://doi.org/10.1038/modpathol.3800760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047729779", 
              "https://doi.org/10.1186/1471-2105-6-168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2009.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008076864", 
              "https://doi.org/10.1038/cr.2009.119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040300876", 
              "https://doi.org/10.1038/nature07391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6605742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048621051", 
              "https://doi.org/10.1038/sj.bjc.6605742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049130438", 
              "https://doi.org/10.1038/ng.127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-60761-769-3_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031022682", 
              "https://doi.org/10.1007/978-1-60761-769-3_14"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-06", 
        "datePublishedReg": "2011-01-06", 
        "description": "BackgroundSOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined.ResultsWe show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.ConclusionsWe present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-12-11", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "ChIP-seq", 
          "LN229 GBM cells", 
          "GBM cells", 
          "expression microarrays", 
          "ChIP-seq technology", 
          "double-negative feedback loop", 
          "tumor suppressor activity", 
          "advanced genomic technologies", 
          "adult stem cells", 
          "negative feedback loop", 
          "key genes", 
          "next-generation sequencing", 
          "precursor microRNAs", 
          "cancer genomes", 
          "genomic technologies", 
          "Sox2 gene", 
          "microarray analysis", 
          "microarray profiling", 
          "SOX2", 
          "miR-452", 
          "SOX2 knockdown", 
          "genes", 
          "human cancers", 
          "glioblastoma multiforme", 
          "generation sequencing", 
          "stem cells", 
          "colony formation", 
          "miR-143", 
          "cell proliferation", 
          "sequencing", 
          "suppressor activity", 
          "miR-145", 
          "knockdown", 
          "useful resource", 
          "microarray", 
          "cells", 
          "feedback loop", 
          "expression", 
          "genome", 
          "SOX18", 
          "SOX1", 
          "microRNAs", 
          "BEX1", 
          "stemness", 
          "profiling", 
          "regulation", 
          "BEX2", 
          "region", 
          "proliferation", 
          "integrated dataset", 
          "multiforme", 
          "carcinogenesis", 
          "insights", 
          "response programs", 
          "analysis", 
          "potential actions", 
          "community", 
          "activity", 
          "research community", 
          "understanding", 
          "response", 
          "loop", 
          "formation", 
          "cancer", 
          "interesting finding", 
          "action", 
          "ResultsWe", 
          "resources", 
          "findings", 
          "program", 
          "dataset", 
          "ConclusionsWe", 
          "system", 
          "technology", 
          "bistable system", 
          "instances"
        ], 
        "name": "The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis", 
        "pagination": "11", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014405053"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-12-11"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21211035"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-12-11", 
          "https://app.dimensions.ai/details/publication/pub.1014405053"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_538.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-12-11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-12-11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      121 URIs      100 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-12-11 schema:about N01538de3c5214f9d9c867af0aec4ad31
    2 N22616732682547b3bdb73cf9b9402a25
    3 N262661faa2704ce1833ebdf95feadfdb
    4 N4a62f16da4224f77a32429d4fcd20815
    5 N4d78a550ea4d4221871a1909fa91df81
    6 N9fa4c0afa94c4dc8b3a416e4a75ef20c
    7 Nc8a06ff5eda6409eb356880b31d75b3c
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author N3cf4ae75a0bf4aa5b399944ec328623a
    11 schema:citation sg:pub.10.1007/978-1-60761-769-3_14
    12 sg:pub.10.1038/cr.2009.119
    13 sg:pub.10.1038/modpathol.3800760
    14 sg:pub.10.1038/nature07391
    15 sg:pub.10.1038/ng.127
    16 sg:pub.10.1038/nn1131
    17 sg:pub.10.1038/nprot.2010.16
    18 sg:pub.10.1038/sj.bjc.6603696
    19 sg:pub.10.1038/sj.bjc.6605742
    20 sg:pub.10.1186/1471-2105-10-328
    21 sg:pub.10.1186/1471-2105-6-168
    22 sg:pub.10.1186/1471-2407-9-374
    23 sg:pub.10.1245/s10434-009-0617-z
    24 schema:datePublished 2011-01-06
    25 schema:datePublishedReg 2011-01-06
    26 schema:description BackgroundSOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined.ResultsWe show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.ConclusionsWe present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N8ab05378ffe84730a332265d18629886
    30 Nb25197d99a494510a739e0e745f4c90a
    31 sg:journal.1023790
    32 schema:keywords BEX1
    33 BEX2
    34 ChIP-seq
    35 ChIP-seq technology
    36 ConclusionsWe
    37 GBM cells
    38 LN229 GBM cells
    39 ResultsWe
    40 SOX1
    41 SOX18
    42 SOX2
    43 SOX2 knockdown
    44 Sox2 gene
    45 action
    46 activity
    47 adult stem cells
    48 advanced genomic technologies
    49 analysis
    50 bistable system
    51 cancer
    52 cancer genomes
    53 carcinogenesis
    54 cell proliferation
    55 cells
    56 colony formation
    57 community
    58 dataset
    59 double-negative feedback loop
    60 expression
    61 expression microarrays
    62 feedback loop
    63 findings
    64 formation
    65 generation sequencing
    66 genes
    67 genome
    68 genomic technologies
    69 glioblastoma multiforme
    70 human cancers
    71 insights
    72 instances
    73 integrated dataset
    74 interesting finding
    75 key genes
    76 knockdown
    77 loop
    78 miR-143
    79 miR-145
    80 miR-452
    81 microRNAs
    82 microarray
    83 microarray analysis
    84 microarray profiling
    85 multiforme
    86 negative feedback loop
    87 next-generation sequencing
    88 potential actions
    89 precursor microRNAs
    90 profiling
    91 program
    92 proliferation
    93 region
    94 regulation
    95 research community
    96 resources
    97 response
    98 response programs
    99 sequencing
    100 stem cells
    101 stemness
    102 suppressor activity
    103 system
    104 technology
    105 tumor suppressor activity
    106 understanding
    107 useful resource
    108 schema:name The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis
    109 schema:pagination 11
    110 schema:productId N0cfa434f112742afb6bd108905d6eecb
    111 N8463f877e4c84cc2be7ac6cce5b5dfea
    112 Neabbc7650af7404e93b9a630c1eca541
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014405053
    114 https://doi.org/10.1186/1471-2164-12-11
    115 schema:sdDatePublished 2022-10-01T06:36
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Ne126852c8d2c4a079807251297cbef65
    118 schema:url https://doi.org/10.1186/1471-2164-12-11
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N01538de3c5214f9d9c867af0aec4ad31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name MicroRNAs
    124 rdf:type schema:DefinedTerm
    125 N08a3689d0a0f4321a89b6109c9e28460 rdf:first sg:person.0714017564.26
    126 rdf:rest rdf:nil
    127 N0cfa434f112742afb6bd108905d6eecb schema:name doi
    128 schema:value 10.1186/1471-2164-12-11
    129 rdf:type schema:PropertyValue
    130 N22616732682547b3bdb73cf9b9402a25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name SOXB1 Transcription Factors
    132 rdf:type schema:DefinedTerm
    133 N262661faa2704ce1833ebdf95feadfdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Humans
    135 rdf:type schema:DefinedTerm
    136 N2a495bdafe4c42699f5405a58df1e0b8 rdf:first sg:person.01044126157.13
    137 rdf:rest Na59d52606cc04163a4bde00115dbe475
    138 N3cf4ae75a0bf4aa5b399944ec328623a rdf:first sg:person.01240556337.44
    139 rdf:rest N5131de7f27004a088f4735f25a218a24
    140 N3f140ecd06e441ec90ce2a65efdf29c6 rdf:first sg:person.0732332471.32
    141 rdf:rest N9dc214d61c2f4d378455aee7392ae70b
    142 N4a62f16da4224f77a32429d4fcd20815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Chromatin Immunoprecipitation
    144 rdf:type schema:DefinedTerm
    145 N4d78a550ea4d4221871a1909fa91df81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Oligonucleotide Array Sequence Analysis
    147 rdf:type schema:DefinedTerm
    148 N5131de7f27004a088f4735f25a218a24 rdf:first sg:person.01274324422.02
    149 rdf:rest Ndb9f6f35d79d4a34821d07b29fc5b6d9
    150 N53530540a31541458bc2c2b7b271344d rdf:first sg:person.01211172103.03
    151 rdf:rest Nbf8058f2b2ac4b68bf59d39f5a0e0ec5
    152 N8463f877e4c84cc2be7ac6cce5b5dfea schema:name dimensions_id
    153 schema:value pub.1014405053
    154 rdf:type schema:PropertyValue
    155 N8ab05378ffe84730a332265d18629886 schema:issueNumber 1
    156 rdf:type schema:PublicationIssue
    157 N9dc214d61c2f4d378455aee7392ae70b rdf:first sg:person.07761572767.32
    158 rdf:rest Nf0390008d03f48129d7d309e5a29b703
    159 N9fa4c0afa94c4dc8b3a416e4a75ef20c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Glioblastoma
    161 rdf:type schema:DefinedTerm
    162 Na59d52606cc04163a4bde00115dbe475 rdf:first sg:person.0666412523.50
    163 rdf:rest N08a3689d0a0f4321a89b6109c9e28460
    164 Nb25197d99a494510a739e0e745f4c90a schema:volumeNumber 12
    165 rdf:type schema:PublicationVolume
    166 Nbf8058f2b2ac4b68bf59d39f5a0e0ec5 rdf:first sg:person.01074401324.82
    167 rdf:rest N3f140ecd06e441ec90ce2a65efdf29c6
    168 Nc8a06ff5eda6409eb356880b31d75b3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Sequence Analysis, DNA
    170 rdf:type schema:DefinedTerm
    171 Ndb9f6f35d79d4a34821d07b29fc5b6d9 rdf:first sg:person.01240120235.54
    172 rdf:rest N53530540a31541458bc2c2b7b271344d
    173 Ne126852c8d2c4a079807251297cbef65 schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 Neabbc7650af7404e93b9a630c1eca541 schema:name pubmed_id
    176 schema:value 21211035
    177 rdf:type schema:PropertyValue
    178 Nf0390008d03f48129d7d309e5a29b703 rdf:first sg:person.016174641237.97
    179 rdf:rest N2a495bdafe4c42699f5405a58df1e0b8
    180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Biological Sciences
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Genetics
    185 rdf:type schema:DefinedTerm
    186 sg:journal.1023790 schema:issn 1471-2164
    187 schema:name BMC Genomics
    188 schema:publisher Springer Nature
    189 rdf:type schema:Periodical
    190 sg:person.01044126157.13 schema:affiliation grid-institutes:grid.34477.33
    191 schema:familyName Goodlett
    192 schema:givenName David R
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13
    194 rdf:type schema:Person
    195 sg:person.01074401324.82 schema:affiliation grid-institutes:grid.13402.34
    196 schema:familyName Shao
    197 schema:givenName Jiaofang
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074401324.82
    199 rdf:type schema:Person
    200 sg:person.01211172103.03 schema:affiliation grid-institutes:grid.13402.34
    201 schema:familyName Yu
    202 schema:givenName Wei
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211172103.03
    204 rdf:type schema:Person
    205 sg:person.01240120235.54 schema:affiliation grid-institutes:grid.13402.34
    206 schema:familyName Li
    207 schema:givenName Lisha
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240120235.54
    209 rdf:type schema:Person
    210 sg:person.01240556337.44 schema:affiliation grid-institutes:grid.34477.33
    211 schema:familyName Fang
    212 schema:givenName Xuefeng
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240556337.44
    214 rdf:type schema:Person
    215 sg:person.01274324422.02 schema:affiliation grid-institutes:grid.281044.b
    216 schema:familyName Yoon
    217 schema:givenName Jae-Geun
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274324422.02
    219 rdf:type schema:Person
    220 sg:person.016174641237.97 schema:affiliation grid-institutes:grid.64212.33
    221 schema:familyName Hood
    222 schema:givenName Leroy
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174641237.97
    224 rdf:type schema:Person
    225 sg:person.0666412523.50 schema:affiliation grid-institutes:grid.281044.b
    226 schema:familyName Foltz
    227 schema:givenName Gregory
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666412523.50
    229 rdf:type schema:Person
    230 sg:person.0714017564.26 schema:affiliation grid-institutes:grid.34477.33
    231 schema:familyName Lin
    232 schema:givenName Biaoyang
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714017564.26
    234 rdf:type schema:Person
    235 sg:person.0732332471.32 schema:affiliation grid-institutes:grid.13402.34
    236 schema:familyName Hua
    237 schema:givenName Dasong
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732332471.32
    239 rdf:type schema:Person
    240 sg:person.07761572767.32 schema:affiliation grid-institutes:grid.13402.34
    241 schema:familyName Zheng
    242 schema:givenName Shu
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07761572767.32
    244 rdf:type schema:Person
    245 sg:pub.10.1007/978-1-60761-769-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031022682
    246 https://doi.org/10.1007/978-1-60761-769-3_14
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/cr.2009.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008076864
    249 https://doi.org/10.1038/cr.2009.119
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/modpathol.3800760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020957401
    252 https://doi.org/10.1038/modpathol.3800760
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature07391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040300876
    255 https://doi.org/10.1038/nature07391
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/ng.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049130438
    258 https://doi.org/10.1038/ng.127
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nn1131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020336466
    261 https://doi.org/10.1038/nn1131
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nprot.2010.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035841380
    264 https://doi.org/10.1038/nprot.2010.16
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/sj.bjc.6603696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049722417
    267 https://doi.org/10.1038/sj.bjc.6603696
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/sj.bjc.6605742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048621051
    270 https://doi.org/10.1038/sj.bjc.6605742
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/1471-2105-10-328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013410347
    273 https://doi.org/10.1186/1471-2105-10-328
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/1471-2105-6-168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047729779
    276 https://doi.org/10.1186/1471-2105-6-168
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/1471-2407-9-374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046756579
    279 https://doi.org/10.1186/1471-2407-9-374
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1245/s10434-009-0617-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024261193
    282 https://doi.org/10.1245/s10434-009-0617-z
    283 rdf:type schema:CreativeWork
    284 grid-institutes:grid.13402.34 schema:alternateName Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, PR, China
    285 Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China
    286 schema:name Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, PR, China
    287 Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China
    288 rdf:type schema:Organization
    289 grid-institutes:grid.281044.b schema:alternateName Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA
    290 schema:name Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA
    291 rdf:type schema:Organization
    292 grid-institutes:grid.34477.33 schema:alternateName Department of Medicinal Chemistry, University of Washington, BOX 367610, 98195, Seattle, WA, USA
    293 Department of Urology, University of Washington, 98195, Seattle, WA, USA
    294 schema:name Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, PR, China
    295 Department of Medicinal Chemistry, University of Washington, BOX 367610, 98195, Seattle, WA, USA
    296 Department of Urology, University of Washington, 98195, Seattle, WA, USA
    297 Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA
    298 Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029, Hangzhou, Zhejiang, PR, China
    299 rdf:type schema:Organization
    300 grid-institutes:grid.64212.33 schema:alternateName The Institute for Systems Biology, 98103, Seattle, WA, USA
    301 schema:name The Institute for Systems Biology, 98103, Seattle, WA, USA
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...