Gene prioritization in Type 2 Diabetes using domain interactions and network analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Amitabh Sharma, Sreenivas Chavali, Rubina Tabassum, Nikhil Tandon, Dwaipayan Bharadwaj

ABSTRACT

BACKGROUND: Identification of disease genes for Type 2 Diabetes (T2D) by traditional methods has yielded limited success. Based on our previous observation that T2D may result from disturbed protein-protein interactions affected through disrupting modular domain interactions, here we have designed an approach to rank the candidates in the T2D linked genomic regions as plausible disease genes. RESULTS: Our approach integrates Weight value (Wv) method followed by prioritization using clustering coefficients derived from domain interaction network. Wv for each candidate is calculated based on the assumption that disease genes might be functionally related, mainly facilitated by interactions among domains of the interacting proteins. The benchmarking using a test dataset comprising of both known T2D genes and non-T2D genes revealed that Wv method had a sensitivity and specificity of 0.74 and 0.96 respectively with 9 fold enrichment. The candidate genes having a Wv > 0.5 were called High Weight Elements (HWEs). Further, we ranked HWEs by using the network property-the clustering coefficient (Ci). Each HWE with a Ci < 0.015 was prioritized as plausible disease candidates (HWEc) as previous studies indicate that disease genes tend to avoid dense clustering (with an average Ci of 0.015). This method further prioritized the identified disease genes with a sensitivity of 0.32 and a specificity of 0.98 and enriched the candidate list by 6.8 fold. Thus, from the dataset of 4052 positional candidates the method ranked 435 to be most likely disease candidates. The gene ontology sharing for the candidates showed higher representation of metabolic and signaling processes. The approach also captured genes with unknown functions which were characterized by network motif analysis. CONCLUSIONS: Prioritization of positional candidates is essential for cost-effective and an expedited discovery of disease genes. Here, we demonstrate a novel approach for disease candidate prioritization from numerous loci linked to T2D. More... »

PAGES

84

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-11-84

DOI

http://dx.doi.org/10.1186/1471-2164-11-84

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031473530

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20122255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Integrative Biology", 
          "id": "https://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Amitabh", 
        "id": "sg:person.01177374325.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177374325.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Integrative Biology", 
          "id": "https://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chavali", 
        "givenName": "Sreenivas", 
        "id": "sg:person.01073350435.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073350435.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Integrative Biology", 
          "id": "https://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabassum", 
        "givenName": "Rubina", 
        "id": "sg:person.0741777355.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741777355.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "All India Institute of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.413618.9", 
          "name": [
            "Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tandon", 
        "givenName": "Nikhil", 
        "id": "sg:person.01065763220.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065763220.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Integrative Biology", 
          "id": "https://www.grid.ac/institutes/grid.417639.e", 
          "name": [
            "Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bharadwaj", 
        "givenName": "Dwaipayan", 
        "id": "sg:person.01014774230.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014774230.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg2178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002495423", 
          "https://doi.org/10.1038/nrg2178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1860604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002868769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2004.03.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004920892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-6-45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005090508", 
          "https://doi.org/10.1186/1471-2156-6-45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006325160", 
          "https://doi.org/10.1038/ng.120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008855074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009644940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010479517", 
          "https://doi.org/10.1186/1471-2105-6-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010479517", 
          "https://doi.org/10.1186/1471-2105-6-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012315762", 
          "https://doi.org/10.1038/nbt1295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1996.0544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014128783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377811", 
          "https://doi.org/10.1038/ng1180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377811", 
          "https://doi.org/10.1038/ng1180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20030207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014497098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20030207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014497098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014503362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-11-120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015165657", 
          "https://doi.org/10.1186/gb-2006-7-11-120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.53.3.861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017950171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2007/962892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018641778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020798638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701722105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023551429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.29.02.06.dc05-1484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025485779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026205118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.52.3.838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028289629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028890774", 
          "https://doi.org/10.1038/ng.269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m313272200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030136627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/504300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031002207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.153002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031289896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db07-0338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032330608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032806326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5594.824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033442686", 
          "https://doi.org/10.1038/ng1242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033442686", 
          "https://doi.org/10.1038/ng1242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034083354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034583416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-0004.2008.01043.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036569569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037383115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.55.01.06.db05-1108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037746743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037976020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200300721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039817325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00379-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041289082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m500024-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042174513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-10-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044982001", 
          "https://doi.org/10.1186/gb-2003-4-10-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049253397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2006.041376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052810524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2007.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053322082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701361104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053516074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1096706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1646484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062497359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138955707782110114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069182816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.48.4.675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070744125"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Identification of disease genes for Type 2 Diabetes (T2D) by traditional methods has yielded limited success. Based on our previous observation that T2D may result from disturbed protein-protein interactions affected through disrupting modular domain interactions, here we have designed an approach to rank the candidates in the T2D linked genomic regions as plausible disease genes.\nRESULTS: Our approach integrates Weight value (Wv) method followed by prioritization using clustering coefficients derived from domain interaction network. Wv for each candidate is calculated based on the assumption that disease genes might be functionally related, mainly facilitated by interactions among domains of the interacting proteins. The benchmarking using a test dataset comprising of both known T2D genes and non-T2D genes revealed that Wv method had a sensitivity and specificity of 0.74 and 0.96 respectively with 9 fold enrichment. The candidate genes having a Wv > 0.5 were called High Weight Elements (HWEs). Further, we ranked HWEs by using the network property-the clustering coefficient (Ci). Each HWE with a Ci < 0.015 was prioritized as plausible disease candidates (HWEc) as previous studies indicate that disease genes tend to avoid dense clustering (with an average Ci of 0.015). This method further prioritized the identified disease genes with a sensitivity of 0.32 and a specificity of 0.98 and enriched the candidate list by 6.8 fold. Thus, from the dataset of 4052 positional candidates the method ranked 435 to be most likely disease candidates. The gene ontology sharing for the candidates showed higher representation of metabolic and signaling processes. The approach also captured genes with unknown functions which were characterized by network motif analysis.\nCONCLUSIONS: Prioritization of positional candidates is essential for cost-effective and an expedited discovery of disease genes. Here, we demonstrate a novel approach for disease candidate prioritization from numerous loci linked to T2D.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-11-84", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Gene prioritization in Type 2 Diabetes using domain interactions and network analysis", 
    "pagination": "84", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "95eec3c42c28515ce6250c29fc1ff8d5d40f98581ca2ce90ce2c4815046c9487"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20122255"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-11-84"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031473530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-11-84", 
      "https://app.dimensions.ai/details/publication/pub.1031473530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-11-84"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-84'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-84'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-84'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-84'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      88 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-11-84 schema:about N0ef13a1e3e564dd7b476ea68526c4085
2 N114004fc25c34f9faa755cd9d29dcaf8
3 N32a67c6f6a4d428089abf810fe25b20b
4 N50d4534b9dee455080c2c198152edbc0
5 Nc2a09367589a4a6f8f5aaf64701ae1a3
6 Nd1f5d6728bab4b71a2abd2332033e55b
7 Ne9752c63c1af4b30a1e79f76fc8e330f
8 anzsrc-for:11
9 anzsrc-for:1103
10 schema:author Nf2b13ad05a004c87b5106051674c908c
11 schema:citation sg:pub.10.1038/75556
12 sg:pub.10.1038/nbt1295
13 sg:pub.10.1038/ng.120
14 sg:pub.10.1038/ng.269
15 sg:pub.10.1038/ng1180
16 sg:pub.10.1038/ng1242
17 sg:pub.10.1038/ng881
18 sg:pub.10.1038/nrg2178
19 sg:pub.10.1186/1471-2105-6-55
20 sg:pub.10.1186/1471-2156-6-45
21 sg:pub.10.1186/gb-2003-4-10-119
22 sg:pub.10.1186/gb-2006-7-11-120
23 https://doi.org/10.1002/pmic.200300721
24 https://doi.org/10.1006/geno.1996.0544
25 https://doi.org/10.1016/j.ajhg.2008.02.013
26 https://doi.org/10.1016/j.bbrc.2004.03.152
27 https://doi.org/10.1016/j.febslet.2007.11.014
28 https://doi.org/10.1016/s0022-2836(02)00379-0
29 https://doi.org/10.1042/bj20030207
30 https://doi.org/10.1073/pnas.0701361104
31 https://doi.org/10.1073/pnas.0701722105
32 https://doi.org/10.1074/jbc.m313272200
33 https://doi.org/10.1074/mcp.m500024-mcp200
34 https://doi.org/10.1086/504300
35 https://doi.org/10.1093/bioinformatics/bti551
36 https://doi.org/10.1093/bioinformatics/btk031
37 https://doi.org/10.1093/bioinformatics/btm554
38 https://doi.org/10.1093/nar/30.1.245
39 https://doi.org/10.1093/nar/30.1.303
40 https://doi.org/10.1093/nar/gkg056
41 https://doi.org/10.1093/nar/gkg079
42 https://doi.org/10.1093/nar/gkh121
43 https://doi.org/10.1093/nar/gkh605
44 https://doi.org/10.1093/nar/gkl381
45 https://doi.org/10.1093/nar/gkl707
46 https://doi.org/10.1101/gr.153002
47 https://doi.org/10.1101/gr.1860604
48 https://doi.org/10.1111/j.1399-0004.2008.01043.x
49 https://doi.org/10.1126/science.1073374
50 https://doi.org/10.1126/science.1096706
51 https://doi.org/10.1126/science.1646484
52 https://doi.org/10.1126/science.298.5594.824
53 https://doi.org/10.1136/jmg.2006.041376
54 https://doi.org/10.1155/2007/962892
55 https://doi.org/10.1371/journal.pone.0001134
56 https://doi.org/10.2174/138955707782110114
57 https://doi.org/10.2337/db07-0338
58 https://doi.org/10.2337/diabetes.48.4.675
59 https://doi.org/10.2337/diabetes.52.3.838
60 https://doi.org/10.2337/diabetes.53.3.861
61 https://doi.org/10.2337/diabetes.55.01.06.db05-1108
62 https://doi.org/10.2337/diacare.29.02.06.dc05-1484
63 schema:datePublished 2010-12
64 schema:datePublishedReg 2010-12-01
65 schema:description BACKGROUND: Identification of disease genes for Type 2 Diabetes (T2D) by traditional methods has yielded limited success. Based on our previous observation that T2D may result from disturbed protein-protein interactions affected through disrupting modular domain interactions, here we have designed an approach to rank the candidates in the T2D linked genomic regions as plausible disease genes. RESULTS: Our approach integrates Weight value (Wv) method followed by prioritization using clustering coefficients derived from domain interaction network. Wv for each candidate is calculated based on the assumption that disease genes might be functionally related, mainly facilitated by interactions among domains of the interacting proteins. The benchmarking using a test dataset comprising of both known T2D genes and non-T2D genes revealed that Wv method had a sensitivity and specificity of 0.74 and 0.96 respectively with 9 fold enrichment. The candidate genes having a Wv > 0.5 were called High Weight Elements (HWEs). Further, we ranked HWEs by using the network property-the clustering coefficient (Ci). Each HWE with a Ci < 0.015 was prioritized as plausible disease candidates (HWEc) as previous studies indicate that disease genes tend to avoid dense clustering (with an average Ci of 0.015). This method further prioritized the identified disease genes with a sensitivity of 0.32 and a specificity of 0.98 and enriched the candidate list by 6.8 fold. Thus, from the dataset of 4052 positional candidates the method ranked 435 to be most likely disease candidates. The gene ontology sharing for the candidates showed higher representation of metabolic and signaling processes. The approach also captured genes with unknown functions which were characterized by network motif analysis. CONCLUSIONS: Prioritization of positional candidates is essential for cost-effective and an expedited discovery of disease genes. Here, we demonstrate a novel approach for disease candidate prioritization from numerous loci linked to T2D.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree true
69 schema:isPartOf Nd6686fdb1ffa46aa81eb42790929f7f1
70 Neae5f6ecc31d422497d14709515ac97a
71 sg:journal.1023790
72 schema:name Gene prioritization in Type 2 Diabetes using domain interactions and network analysis
73 schema:pagination 84
74 schema:productId N111ef3e5255e427b96028a932902c371
75 N4e39b2596c3c46ed8bb6b46dade1ac10
76 N5257e8b016ce467ca187e1a1bc4604fc
77 N557185de8ee94a1683f62e021415ed64
78 Nd47a68a026a94500821144815db15888
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031473530
80 https://doi.org/10.1186/1471-2164-11-84
81 schema:sdDatePublished 2019-04-10T21:35
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N92a1a0fdbdb44c598cf08112ac42b601
84 schema:url http://link.springer.com/10.1186%2F1471-2164-11-84
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0ef13a1e3e564dd7b476ea68526c4085 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Sensitivity and Specificity
90 rdf:type schema:DefinedTerm
91 N111ef3e5255e427b96028a932902c371 schema:name pubmed_id
92 schema:value 20122255
93 rdf:type schema:PropertyValue
94 N114004fc25c34f9faa755cd9d29dcaf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Diabetes Mellitus, Type 2
96 rdf:type schema:DefinedTerm
97 N288a01dcda3246bebbe8666835136ae4 rdf:first sg:person.0741777355.51
98 rdf:rest Nf3fd81d017534e76bed0f58dfab15328
99 N32a67c6f6a4d428089abf810fe25b20b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Protein Interaction Mapping
101 rdf:type schema:DefinedTerm
102 N4e39b2596c3c46ed8bb6b46dade1ac10 schema:name dimensions_id
103 schema:value pub.1031473530
104 rdf:type schema:PropertyValue
105 N50d4534b9dee455080c2c198152edbc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Cluster Analysis
107 rdf:type schema:DefinedTerm
108 N5257e8b016ce467ca187e1a1bc4604fc schema:name doi
109 schema:value 10.1186/1471-2164-11-84
110 rdf:type schema:PropertyValue
111 N557185de8ee94a1683f62e021415ed64 schema:name readcube_id
112 schema:value 95eec3c42c28515ce6250c29fc1ff8d5d40f98581ca2ce90ce2c4815046c9487
113 rdf:type schema:PropertyValue
114 N7fa478a6e61147298c48b06f508b48ac rdf:first sg:person.01014774230.18
115 rdf:rest rdf:nil
116 N8de6289dc3d74c3f9d9a1b53e495c470 rdf:first sg:person.01073350435.40
117 rdf:rest N288a01dcda3246bebbe8666835136ae4
118 N92a1a0fdbdb44c598cf08112ac42b601 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nc2a09367589a4a6f8f5aaf64701ae1a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Microsatellite Repeats
122 rdf:type schema:DefinedTerm
123 Nd1f5d6728bab4b71a2abd2332033e55b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Nd47a68a026a94500821144815db15888 schema:name nlm_unique_id
127 schema:value 100965258
128 rdf:type schema:PropertyValue
129 Nd6686fdb1ffa46aa81eb42790929f7f1 schema:volumeNumber 11
130 rdf:type schema:PublicationVolume
131 Ne9752c63c1af4b30a1e79f76fc8e330f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Computational Biology
133 rdf:type schema:DefinedTerm
134 Neae5f6ecc31d422497d14709515ac97a schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 Nf2b13ad05a004c87b5106051674c908c rdf:first sg:person.01177374325.69
137 rdf:rest N8de6289dc3d74c3f9d9a1b53e495c470
138 Nf3fd81d017534e76bed0f58dfab15328 rdf:first sg:person.01065763220.52
139 rdf:rest N7fa478a6e61147298c48b06f508b48ac
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
144 schema:name Clinical Sciences
145 rdf:type schema:DefinedTerm
146 sg:journal.1023790 schema:issn 1471-2164
147 schema:name BMC Genomics
148 rdf:type schema:Periodical
149 sg:person.01014774230.18 schema:affiliation https://www.grid.ac/institutes/grid.417639.e
150 schema:familyName Bharadwaj
151 schema:givenName Dwaipayan
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014774230.18
153 rdf:type schema:Person
154 sg:person.01065763220.52 schema:affiliation https://www.grid.ac/institutes/grid.413618.9
155 schema:familyName Tandon
156 schema:givenName Nikhil
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065763220.52
158 rdf:type schema:Person
159 sg:person.01073350435.40 schema:affiliation https://www.grid.ac/institutes/grid.417639.e
160 schema:familyName Chavali
161 schema:givenName Sreenivas
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073350435.40
163 rdf:type schema:Person
164 sg:person.01177374325.69 schema:affiliation https://www.grid.ac/institutes/grid.417639.e
165 schema:familyName Sharma
166 schema:givenName Amitabh
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177374325.69
168 rdf:type schema:Person
169 sg:person.0741777355.51 schema:affiliation https://www.grid.ac/institutes/grid.417639.e
170 schema:familyName Tabassum
171 schema:givenName Rubina
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741777355.51
173 rdf:type schema:Person
174 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
175 https://doi.org/10.1038/75556
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nbt1295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012315762
178 https://doi.org/10.1038/nbt1295
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/ng.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006325160
181 https://doi.org/10.1038/ng.120
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/ng.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028890774
184 https://doi.org/10.1038/ng.269
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ng1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377811
187 https://doi.org/10.1038/ng1180
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ng1242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033442686
190 https://doi.org/10.1038/ng1242
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
193 https://doi.org/10.1038/ng881
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nrg2178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002495423
196 https://doi.org/10.1038/nrg2178
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1471-2105-6-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010479517
199 https://doi.org/10.1186/1471-2105-6-55
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1471-2156-6-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005090508
202 https://doi.org/10.1186/1471-2156-6-45
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/gb-2003-4-10-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044982001
205 https://doi.org/10.1186/gb-2003-4-10-119
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/gb-2006-7-11-120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015165657
208 https://doi.org/10.1186/gb-2006-7-11-120
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/pmic.200300721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039817325
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1006/geno.1996.0544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014128783
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ajhg.2008.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037383115
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.bbrc.2004.03.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004920892
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.febslet.2007.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053322082
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0022-2836(02)00379-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041289082
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1042/bj20030207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014497098
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1073/pnas.0701361104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053516074
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.0701722105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023551429
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1074/jbc.m313272200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030136627
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1074/mcp.m500024-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042174513
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1086/504300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031002207
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bioinformatics/bti551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032806326
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btk031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034083354
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/btm554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049253397
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/30.1.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008855074
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/30.1.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014503362
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/nar/gkg056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009644940
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/gkg079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026205118
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/gkh121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020798638
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/gkh605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034583416
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/gkl381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884763
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/nar/gkl707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017950171
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1101/gr.153002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289896
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1101/gr.1860604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002868769
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1111/j.1399-0004.2008.01043.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036569569
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.1096706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449543
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.1646484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497359
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1136/jmg.2006.041376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052810524
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1155/2007/962892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018641778
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1371/journal.pone.0001134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037976020
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2174/138955707782110114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069182816
277 rdf:type schema:CreativeWork
278 https://doi.org/10.2337/db07-0338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032330608
279 rdf:type schema:CreativeWork
280 https://doi.org/10.2337/diabetes.48.4.675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070744125
281 rdf:type schema:CreativeWork
282 https://doi.org/10.2337/diabetes.52.3.838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028289629
283 rdf:type schema:CreativeWork
284 https://doi.org/10.2337/diabetes.53.3.861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017187468
285 rdf:type schema:CreativeWork
286 https://doi.org/10.2337/diabetes.55.01.06.db05-1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037746743
287 rdf:type schema:CreativeWork
288 https://doi.org/10.2337/diacare.29.02.06.dc05-1484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025485779
289 rdf:type schema:CreativeWork
290 https://www.grid.ac/institutes/grid.413618.9 schema:alternateName All India Institute of Medical Sciences
291 schema:name Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.417639.e schema:alternateName Institute of Genomics and Integrative Biology
294 schema:name Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...