Prediction of CpG-island function: CpG clustering vs. sliding-window methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Michael Hackenberg, Guillermo Barturen, Pedro Carpena, Pedro L Luque-Escamilla, Christopher Previti, José L Oliver

ABSTRACT

BACKGROUND: Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. RESULTS: We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. CONCLUSIONS: The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. More... »

PAGES

327

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-11-327

DOI

http://dx.doi.org/10.1186/1471-2164-11-327

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046742493

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20500903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alu Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CpG Islands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Granada", 
          "id": "https://www.grid.ac/institutes/grid.4489.1", 
          "name": [
            "Dpto. de Gen\u00e9tica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain", 
            "Lab. de Bioinform\u00e1tica, Centro de Investigaci\u00f3n Biom\u00e9dica, PTS, Avda. del Conocimiento s/n, 18100, Granada, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackenberg", 
        "givenName": "Michael", 
        "id": "sg:person.01062552671.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062552671.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Granada", 
          "id": "https://www.grid.ac/institutes/grid.4489.1", 
          "name": [
            "Dpto. de Gen\u00e9tica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain", 
            "Lab. de Bioinform\u00e1tica, Centro de Investigaci\u00f3n Biom\u00e9dica, PTS, Avda. del Conocimiento s/n, 18100, Granada, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barturen", 
        "givenName": "Guillermo", 
        "id": "sg:person.01260203443.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260203443.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Dpto. de F\u00edsica Aplicada II, E.T.S.I. de Telecomunicaci\u00f3n, Universidad de M\u00e1laga, 29071, Malaga, Spain", 
            "Division of Sleep Medicine, Brigham and Woman's Hospital, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carpena", 
        "givenName": "Pedro", 
        "id": "sg:person.01364440457.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364440457.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ja\u00e9n", 
          "id": "https://www.grid.ac/institutes/grid.21507.31", 
          "name": [
            "Dpto. de Ingenier\u00eda Mec\u00e1nica y Minera, EPS Ja\u00e9n-Universidad de Ja\u00e9n, Campus Las Lagunillas s/n A3-008, 23071, Ja\u00e9n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luque-Escamilla", 
        "givenName": "Pedro L", 
        "id": "sg:person.0745764413.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745764413.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bergen", 
          "id": "https://www.grid.ac/institutes/grid.7914.b", 
          "name": [
            "Computational Biology Unit, Bergen Center for Computational Science & Sars Centre for Marine Molecular Biology, University of Bergen, Thorm\u00f8hlensgt 55, 5008, Bergen, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Previti", 
        "givenName": "Christopher", 
        "id": "sg:person.01015743145.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015743145.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Granada", 
          "id": "https://www.grid.ac/institutes/grid.4489.1", 
          "name": [
            "Dpto. de Gen\u00e9tica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain", 
            "Lab. de Bioinform\u00e1tica, Centro de Investigaci\u00f3n Biom\u00e9dica, PTS, Avda. del Conocimiento s/n, 18100, Granada, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliver", 
        "givenName": "Jos\u00e9 L", 
        "id": "sg:person.0643703414.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643703414.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature08514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394004", 
          "https://doi.org/10.1038/nature08514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394004", 
          "https://doi.org/10.1038/nature08514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400782101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002732260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/10.7.687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005780142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006923833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008035809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012581342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0060022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016609452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016972616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019249723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321209a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022096390", 
          "https://doi.org/10.1038/321209a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321209a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022096390", 
          "https://doi.org/10.1038/321209a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321209a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022096390", 
          "https://doi.org/10.1038/321209a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022734672", 
          "https://doi.org/10.1186/1471-2105-10-65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022734672", 
          "https://doi.org/10.1186/1471-2105-10-65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90689-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609746104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023276590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023436066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.052410099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023462148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-003-3088-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023588237", 
          "https://doi.org/10.1007/s00018-003-3088-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023845443", 
          "https://doi.org/10.1186/1471-2105-7-446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023845443", 
          "https://doi.org/10.1186/1471-2105-7-446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.095190.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026265958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510310103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026928995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxq005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028758586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408436102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029085177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.947102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030570608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033930047", 
          "https://doi.org/10.1038/nrc1507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033930047", 
          "https://doi.org/10.1038/nrc1507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034474001", 
          "https://doi.org/10.1038/ng1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1996.0298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034621866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038104328", 
          "https://doi.org/10.1186/jbiol207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9222-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038581105", 
          "https://doi.org/10.1007/s00335-009-9222-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9222-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038581105", 
          "https://doi.org/10.1007/s00335-009-9222-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9222-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038581105", 
          "https://doi.org/10.1007/s00335-009-9222-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1557-4679.1158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038922082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.4.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040587807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.19.11.7327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040986154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-11-405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042262580", 
          "https://doi.org/10.1186/gb-2008-9-11-405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(02)00010-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042530571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044577633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045968562", 
          "https://doi.org/10.1186/1471-2105-10-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045968562", 
          "https://doi.org/10.1186/1471-2105-10-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(92)90024-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046950562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3715005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048048079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2008.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048852913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2009.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052755396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053200083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.061925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.061925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6026/97320630002335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073593870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074801105", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075343242", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence.\nRESULTS: We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains.\nCONCLUSIONS: The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-11-327", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Prediction of CpG-island function: CpG clustering vs. sliding-window methods", 
    "pagination": "327", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dea9a4ac82838ee90c90e0257e69062471d12ab42dd8100c9482ccf7f16aba76"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20500903"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-11-327"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046742493"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-11-327", 
      "https://app.dimensions.ai/details/publication/pub.1046742493"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-11-327"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-327'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-327'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-327'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-327'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      82 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-11-327 schema:about N2726c542eaf74c1c9cfab4aed2768cd6
2 N2eed3a346e4748bcb237d353560fb765
3 N4457ea8e1b7541eba6e1f880bebdb79a
4 N4f0871fdcfd54703846348eab2da8dbf
5 N540d5e3796814a818dc10f7d45330942
6 N66f6c7e2c4b044dd8c4fc83d40fc811f
7 Nc0b33e755943470385bb9d224d0d02ce
8 Ne5bd23c079a4422aa3f910083510b462
9 Nfc638b0554f3490291f8a1cd890ad373
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N1c709bf81cd04a5cb32905f31d619a1f
13 schema:citation sg:pub.10.1007/s00018-003-3088-6
14 sg:pub.10.1007/s00335-009-9222-5
15 sg:pub.10.1038/321209a0
16 sg:pub.10.1038/nature08514
17 sg:pub.10.1038/ng1909
18 sg:pub.10.1038/ng1990
19 sg:pub.10.1038/nrc1507
20 sg:pub.10.1186/1471-2105-10-116
21 sg:pub.10.1186/1471-2105-10-65
22 sg:pub.10.1186/1471-2105-7-446
23 sg:pub.10.1186/gb-2008-9-11-405
24 sg:pub.10.1186/jbiol207
25 https://app.dimensions.ai/details/publication/pub.1074801105
26 https://app.dimensions.ai/details/publication/pub.1075343242
27 https://doi.org/10.1006/geno.1996.0298
28 https://doi.org/10.1016/0022-2836(87)90689-9
29 https://doi.org/10.1016/0888-7543(92)90024-m
30 https://doi.org/10.1016/j.febslet.2009.04.012
31 https://doi.org/10.1016/j.tig.2008.08.004
32 https://doi.org/10.1016/s0097-8485(02)00010-4
33 https://doi.org/10.1073/pnas.0400782101
34 https://doi.org/10.1073/pnas.0408436102
35 https://doi.org/10.1073/pnas.0510310103
36 https://doi.org/10.1073/pnas.052410099
37 https://doi.org/10.1073/pnas.0609746104
38 https://doi.org/10.1093/bioinformatics/18.4.631
39 https://doi.org/10.1093/bioinformatics/bth059
40 https://doi.org/10.1093/biostatistics/kxq005
41 https://doi.org/10.1093/hmg/10.7.687
42 https://doi.org/10.1093/nar/gkj129
43 https://doi.org/10.1093/nar/gkl842
44 https://doi.org/10.1093/nar/gkm489
45 https://doi.org/10.1093/nar/gkm901
46 https://doi.org/10.1093/nar/gkm966
47 https://doi.org/10.1101/gad.947102
48 https://doi.org/10.1101/gr.095190.109
49 https://doi.org/10.1101/gr.3715005
50 https://doi.org/10.1103/physreve.71.061925
51 https://doi.org/10.1128/mcb.19.11.7327
52 https://doi.org/10.1371/journal.pbio.0060022
53 https://doi.org/10.1371/journal.pcbi.0030110
54 https://doi.org/10.1371/journal.pgen.0020017
55 https://doi.org/10.2202/1557-4679.1158
56 https://doi.org/10.6026/97320630002335
57 schema:datePublished 2010-12
58 schema:datePublishedReg 2010-12-01
59 schema:description BACKGROUND: Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. RESULTS: We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. CONCLUSIONS: The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N394a4c0100ce4e0ea9a438be6a12d1e2
64 Ncd8e2cdbc4d04ce8b83dfd9ada0c48c5
65 sg:journal.1023790
66 schema:name Prediction of CpG-island function: CpG clustering vs. sliding-window methods
67 schema:pagination 327
68 schema:productId N1979fe2a930143208b9255fc90d91bc3
69 N31707bc0cfe649f89797f85c8573b70f
70 N72e4dd15dcf4438888f75fdffa3baeac
71 Nc3ce363906584288a494e545734b490d
72 Nc3f1ca88ac4b4f1ea678a1ce6b729fbc
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046742493
74 https://doi.org/10.1186/1471-2164-11-327
75 schema:sdDatePublished 2019-04-11T01:14
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nee31294e41ac4a82bce5aa6d7d20ec81
78 schema:url http://link.springer.com/10.1186%2F1471-2164-11-327
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N1979fe2a930143208b9255fc90d91bc3 schema:name doi
83 schema:value 10.1186/1471-2164-11-327
84 rdf:type schema:PropertyValue
85 N1c709bf81cd04a5cb32905f31d619a1f rdf:first sg:person.01062552671.42
86 rdf:rest Nd12cec1b331c4ce082a9fc3e73cee715
87 N2726c542eaf74c1c9cfab4aed2768cd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name DNA Methylation
89 rdf:type schema:DefinedTerm
90 N2eed3a346e4748bcb237d353560fb765 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Algorithms
92 rdf:type schema:DefinedTerm
93 N31707bc0cfe649f89797f85c8573b70f schema:name nlm_unique_id
94 schema:value 100965258
95 rdf:type schema:PropertyValue
96 N394a4c0100ce4e0ea9a438be6a12d1e2 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N3b5e601885e14cea834cb1714f038fe0 rdf:first sg:person.0745764413.01
99 rdf:rest N9683f39cf77c4d3284f94e16eaa7c47c
100 N4457ea8e1b7541eba6e1f880bebdb79a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Evolution, Molecular
102 rdf:type schema:DefinedTerm
103 N4f0871fdcfd54703846348eab2da8dbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Conserved Sequence
105 rdf:type schema:DefinedTerm
106 N540d5e3796814a818dc10f7d45330942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name CpG Islands
108 rdf:type schema:DefinedTerm
109 N66f6c7e2c4b044dd8c4fc83d40fc811f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Alu Elements
111 rdf:type schema:DefinedTerm
112 N72e4dd15dcf4438888f75fdffa3baeac schema:name dimensions_id
113 schema:value pub.1046742493
114 rdf:type schema:PropertyValue
115 N74b21e9274fa4f78990216ce38400c54 rdf:first sg:person.0643703414.30
116 rdf:rest rdf:nil
117 N7d9fc6d98195416cbecc3b505b0e79b8 rdf:first sg:person.01364440457.27
118 rdf:rest N3b5e601885e14cea834cb1714f038fe0
119 N9683f39cf77c4d3284f94e16eaa7c47c rdf:first sg:person.01015743145.65
120 rdf:rest N74b21e9274fa4f78990216ce38400c54
121 Nc0b33e755943470385bb9d224d0d02ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Cluster Analysis
123 rdf:type schema:DefinedTerm
124 Nc3ce363906584288a494e545734b490d schema:name readcube_id
125 schema:value dea9a4ac82838ee90c90e0257e69062471d12ab42dd8100c9482ccf7f16aba76
126 rdf:type schema:PropertyValue
127 Nc3f1ca88ac4b4f1ea678a1ce6b729fbc schema:name pubmed_id
128 schema:value 20500903
129 rdf:type schema:PropertyValue
130 Ncd8e2cdbc4d04ce8b83dfd9ada0c48c5 schema:volumeNumber 11
131 rdf:type schema:PublicationVolume
132 Nd12cec1b331c4ce082a9fc3e73cee715 rdf:first sg:person.01260203443.36
133 rdf:rest N7d9fc6d98195416cbecc3b505b0e79b8
134 Ne5bd23c079a4422aa3f910083510b462 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Promoter Regions, Genetic
136 rdf:type schema:DefinedTerm
137 Nee31294e41ac4a82bce5aa6d7d20ec81 schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Nfc638b0554f3490291f8a1cd890ad373 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:journal.1023790 schema:issn 1471-2164
149 schema:name BMC Genomics
150 rdf:type schema:Periodical
151 sg:person.01015743145.65 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
152 schema:familyName Previti
153 schema:givenName Christopher
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015743145.65
155 rdf:type schema:Person
156 sg:person.01062552671.42 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
157 schema:familyName Hackenberg
158 schema:givenName Michael
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062552671.42
160 rdf:type schema:Person
161 sg:person.01260203443.36 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
162 schema:familyName Barturen
163 schema:givenName Guillermo
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260203443.36
165 rdf:type schema:Person
166 sg:person.01364440457.27 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
167 schema:familyName Carpena
168 schema:givenName Pedro
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364440457.27
170 rdf:type schema:Person
171 sg:person.0643703414.30 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
172 schema:familyName Oliver
173 schema:givenName José L
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643703414.30
175 rdf:type schema:Person
176 sg:person.0745764413.01 schema:affiliation https://www.grid.ac/institutes/grid.21507.31
177 schema:familyName Luque-Escamilla
178 schema:givenName Pedro L
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745764413.01
180 rdf:type schema:Person
181 sg:pub.10.1007/s00018-003-3088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023588237
182 https://doi.org/10.1007/s00018-003-3088-6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00335-009-9222-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038581105
185 https://doi.org/10.1007/s00335-009-9222-5
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/321209a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022096390
188 https://doi.org/10.1038/321209a0
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature08514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394004
191 https://doi.org/10.1038/nature08514
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ng1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014231758
194 https://doi.org/10.1038/ng1909
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ng1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034474001
197 https://doi.org/10.1038/ng1990
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nrc1507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033930047
200 https://doi.org/10.1038/nrc1507
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2105-10-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045968562
203 https://doi.org/10.1186/1471-2105-10-116
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2105-10-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022734672
206 https://doi.org/10.1186/1471-2105-10-65
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2105-7-446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023845443
209 https://doi.org/10.1186/1471-2105-7-446
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/gb-2008-9-11-405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042262580
212 https://doi.org/10.1186/gb-2008-9-11-405
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/jbiol207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038104328
215 https://doi.org/10.1186/jbiol207
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1074801105 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1075343242 schema:CreativeWork
219 https://doi.org/10.1006/geno.1996.0298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034621866
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/0022-2836(87)90689-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754921
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0888-7543(92)90024-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1046950562
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.febslet.2009.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052755396
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.tig.2008.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852913
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s0097-8485(02)00010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042530571
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1073/pnas.0400782101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002732260
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1073/pnas.0408436102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029085177
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1073/pnas.0510310103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026928995
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1073/pnas.052410099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023462148
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1073/pnas.0609746104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023276590
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/bioinformatics/18.4.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040587807
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bioinformatics/bth059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023436066
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/biostatistics/kxq005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028758586
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/hmg/10.7.687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005780142
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/gkj129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016972616
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/nar/gkl842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035809
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/nar/gkm489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044577633
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/nar/gkm901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006923833
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/nar/gkm966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019249723
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1101/gad.947102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030570608
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1101/gr.095190.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026265958
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1101/gr.3715005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048048079
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physreve.71.061925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733059
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1128/mcb.19.11.7327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040986154
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1371/journal.pbio.0060022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016609452
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1371/journal.pcbi.0030110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200083
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1371/journal.pgen.0020017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012581342
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2202/1557-4679.1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038922082
276 rdf:type schema:CreativeWork
277 https://doi.org/10.6026/97320630002335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073593870
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.21507.31 schema:alternateName University of Jaén
280 schema:name Dpto. de Ingeniería Mecánica y Minera, EPS Jaén-Universidad de Jaén, Campus Las Lagunillas s/n A3-008, 23071, Jaén, Spain
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
283 schema:name Division of Sleep Medicine, Brigham and Woman's Hospital, Harvard Medical School, 02115, Boston, MA, USA
284 Dpto. de Física Aplicada II, E.T.S.I. de Telecomunicación, Universidad de Málaga, 29071, Malaga, Spain
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.4489.1 schema:alternateName University of Granada
287 schema:name Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
288 Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100, Granada, Spain
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.7914.b schema:alternateName University of Bergen
291 schema:name Computational Biology Unit, Bergen Center for Computational Science & Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008, Bergen, Norway
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...