Whole genome analysis of p38 SAPK-mediated gene expression upon stress View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03-01

AUTHORS

Isabel Ferreiro, Manel Joaquin, Abul Islam, Gonzalo Gomez-Lopez, Montserrat Barragan, Luís Lombardía, Orlando Domínguez, David G Pisano, Nuria Lopez-Bigas, Angel R Nebreda, Francesc Posas

ABSTRACT

BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli. RESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. CONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress. More... »

PAGES

144-144

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-11-144

DOI

http://dx.doi.org/10.1186/1471-2164-11-144

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032976161

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20187982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anisomycin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dehydration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibroblasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Knockout Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Necrosis Factor-alpha", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "p38 Mitogen-Activated Protein Kinases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferreiro", 
        "givenName": "Isabel", 
        "id": "sg:person.0625302327.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302327.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joaquin", 
        "givenName": "Manel", 
        "id": "sg:person.01166344627.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166344627.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Islam", 
        "givenName": "Abul", 
        "id": "sg:person.016327665272.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327665272.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gomez-Lopez", 
        "givenName": "Gonzalo", 
        "id": "sg:person.0700636421.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700636421.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barragan", 
        "givenName": "Montserrat", 
        "id": "sg:person.01207410427.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207410427.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lombard\u00eda", 
        "givenName": "Lu\u00eds", 
        "id": "sg:person.01052555104.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052555104.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Genomics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dom\u00ednguez", 
        "givenName": "Orlando", 
        "id": "sg:person.0710025320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710025320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pisano", 
        "givenName": "David G", 
        "id": "sg:person.01361770421.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361770421.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez-Bigas", 
        "givenName": "Nuria", 
        "id": "sg:person.01232662277.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232662277.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nebreda", 
        "givenName": "Angel R", 
        "id": "sg:person.01004742652.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004742652.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Posas", 
        "givenName": "Francesc", 
        "id": "sg:person.01274042222.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274042222.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1210412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052904461", 
          "https://doi.org/10.1038/sj.onc.1210412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046607600", 
          "https://doi.org/10.1038/nrc2694"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-01", 
    "datePublishedReg": "2010-03-01", 
    "description": "BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.\nRESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress.\nCONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-11-144", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "p38 stress-activated protein kinase", 
      "stress-activated protein kinase", 
      "mouse embryonic fibroblasts", 
      "early gene expression program", 
      "gene expression", 
      "genome-wide transcriptional analysis", 
      "cell adaptation", 
      "stress-induced transcriptional responses", 
      "stress-responsive genes", 
      "whole genome expression analysis", 
      "gene expression programs", 
      "whole genome analysis", 
      "genome expression analysis", 
      "SAPK signaling", 
      "expression programs", 
      "transcriptional control", 
      "transcriptional response", 
      "transcriptional analysis", 
      "genome analysis", 
      "transcription factors", 
      "protein kinase", 
      "embryonic fibroblasts", 
      "expression analysis", 
      "KO cells", 
      "molecular mechanisms", 
      "chemical inhibitors", 
      "early genes", 
      "genes", 
      "environmental changes", 
      "protein synthesis inhibitor anisomycin", 
      "family member present", 
      "activation kinetics", 
      "common response", 
      "specific stimuli", 
      "cells", 
      "expression", 
      "different stimuli", 
      "p38alpha", 
      "activation", 
      "inhibitor treatment", 
      "cytokine TNFalpha", 
      "kinase", 
      "adaptation", 
      "signaling", 
      "p38", 
      "stress", 
      "anisomycin", 
      "regulation", 
      "response", 
      "fibroblasts", 
      "inhibitors", 
      "selective response", 
      "important set", 
      "mechanism", 
      "analysis", 
      "TNFalpha", 
      "overlap", 
      "changes", 
      "stimuli", 
      "ability", 
      "insult", 
      "pattern responses", 
      "set", 
      "addition", 
      "factors", 
      "treatment", 
      "control", 
      "kinetics", 
      "varies", 
      "present", 
      "contribution", 
      "preparation", 
      "overall set", 
      "dependency", 
      "good overlap", 
      "program", 
      "time", 
      "p38 SAPK signalling", 
      "different p38 SAPK", 
      "synthesis inhibitor anisomycin", 
      "inhibitor anisomycin", 
      "p38alpha SAPK", 
      "complex gene pattern response", 
      "gene pattern response", 
      "contribution of p38alpha", 
      "major p38 family member present", 
      "p38 family member present", 
      "member present", 
      "overall stress-induced transcriptional response", 
      "p38alpha deficient (p38alpha-/-) MEFs", 
      "deficient (p38alpha-/-) MEFs", 
      "p38 SAPK dependency", 
      "SAPK dependency", 
      "SAPK varies", 
      "restricted common response", 
      "continuous extra-cellular changes", 
      "extra-cellular changes"
    ], 
    "name": "Whole genome analysis of p38 SAPK-mediated gene expression upon stress", 
    "pagination": "144-144", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032976161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-11-144"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20187982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-11-144", 
      "https://app.dimensions.ai/details/publication/pub.1032976161"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-11-144"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      22 PREDICATES      141 URIs      129 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-11-144 schema:about N2541ded81b0c44dca59676735994259e
2 N29d8cb020fdb4ea699aa3e770df7c90d
3 N3243550a3f254107811108b603d81dc6
4 N4380ee11f0f94b47b607d62b4175644b
5 N7699bf6e0b2c4596b4a9b8677a0652ff
6 N879dc312f9704b70941af9393113275d
7 N98056c0d38834bf380695f4e04e0a9d8
8 N987704e189354a0687908f4a69021618
9 Nb782d195d7db42d7b6e1e4b546efa755
10 Nd95b3380069241c9a756c95d39b8ecf5
11 Ne026e0a51e8142c48542710bad01166a
12 Neadf32da52e8422083229b4642f4e414
13 Nfc99191f788246c0bd5e8744dc3dc8f9
14 Nfcba7f8c41f04e54bc8400a0e3c04b91
15 anzsrc-for:06
16 anzsrc-for:0601
17 anzsrc-for:0604
18 schema:author Nc18286b24b9f4b26bb0647cf8d94b150
19 schema:citation sg:pub.10.1038/75556
20 sg:pub.10.1038/nrc2694
21 sg:pub.10.1038/sj.onc.1210412
22 schema:datePublished 2010-03-01
23 schema:datePublishedReg 2010-03-01
24 schema:description BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli. RESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. CONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N64fcf7d2a98a4bd1843b527b3a318787
29 Nd6fa29fb5cdf462482b78a44a68ed48b
30 sg:journal.1023790
31 schema:keywords KO cells
32 SAPK dependency
33 SAPK signaling
34 SAPK varies
35 TNFalpha
36 ability
37 activation
38 activation kinetics
39 adaptation
40 addition
41 analysis
42 anisomycin
43 cell adaptation
44 cells
45 changes
46 chemical inhibitors
47 common response
48 complex gene pattern response
49 continuous extra-cellular changes
50 contribution
51 contribution of p38alpha
52 control
53 cytokine TNFalpha
54 deficient (p38alpha-/-) MEFs
55 dependency
56 different p38 SAPK
57 different stimuli
58 early gene expression program
59 early genes
60 embryonic fibroblasts
61 environmental changes
62 expression
63 expression analysis
64 expression programs
65 extra-cellular changes
66 factors
67 family member present
68 fibroblasts
69 gene expression
70 gene expression programs
71 gene pattern response
72 genes
73 genome analysis
74 genome expression analysis
75 genome-wide transcriptional analysis
76 good overlap
77 important set
78 inhibitor anisomycin
79 inhibitor treatment
80 inhibitors
81 insult
82 kinase
83 kinetics
84 major p38 family member present
85 mechanism
86 member present
87 molecular mechanisms
88 mouse embryonic fibroblasts
89 overall set
90 overall stress-induced transcriptional response
91 overlap
92 p38
93 p38 SAPK dependency
94 p38 SAPK signalling
95 p38 family member present
96 p38 stress-activated protein kinase
97 p38alpha
98 p38alpha SAPK
99 p38alpha deficient (p38alpha-/-) MEFs
100 pattern responses
101 preparation
102 present
103 program
104 protein kinase
105 protein synthesis inhibitor anisomycin
106 regulation
107 response
108 restricted common response
109 selective response
110 set
111 signaling
112 specific stimuli
113 stimuli
114 stress
115 stress-activated protein kinase
116 stress-induced transcriptional responses
117 stress-responsive genes
118 synthesis inhibitor anisomycin
119 time
120 transcription factors
121 transcriptional analysis
122 transcriptional control
123 transcriptional response
124 treatment
125 varies
126 whole genome analysis
127 whole genome expression analysis
128 schema:name Whole genome analysis of p38 SAPK-mediated gene expression upon stress
129 schema:pagination 144-144
130 schema:productId N6b7ce70a97b145db8a4d2014f67ac45f
131 Nd94ad2d13e964f088b44752a65504df2
132 Nff2a79ce374b45eba5aff4f725b2885c
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032976161
134 https://doi.org/10.1186/1471-2164-11-144
135 schema:sdDatePublished 2022-01-01T18:23
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher Nf0c7743bed094546b4eccc200058e797
138 schema:url https://doi.org/10.1186/1471-2164-11-144
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N2541ded81b0c44dca59676735994259e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Dehydration
144 rdf:type schema:DefinedTerm
145 N2717852af781476ca64b4cd16d7b1527 rdf:first sg:person.0710025320.18
146 rdf:rest Nd134ee90023f4a40b2f464a4016c0558
147 N29d8cb020fdb4ea699aa3e770df7c90d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Fibroblasts
149 rdf:type schema:DefinedTerm
150 N3243550a3f254107811108b603d81dc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Mice
152 rdf:type schema:DefinedTerm
153 N372c16243a1346909fcc05d8579a52bf rdf:first sg:person.016327665272.47
154 rdf:rest N8139caa2f11d4eda941db3e4e6ec544e
155 N4380ee11f0f94b47b607d62b4175644b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Gene Knockout Techniques
157 rdf:type schema:DefinedTerm
158 N4805d7fe6f3c460ba83371517f4dc7c5 rdf:first sg:person.01166344627.61
159 rdf:rest N372c16243a1346909fcc05d8579a52bf
160 N64fcf7d2a98a4bd1843b527b3a318787 schema:issueNumber 1
161 rdf:type schema:PublicationIssue
162 N6b7ce70a97b145db8a4d2014f67ac45f schema:name doi
163 schema:value 10.1186/1471-2164-11-144
164 rdf:type schema:PropertyValue
165 N720213ab993f4147995c85ca345a716f rdf:first sg:person.01207410427.05
166 rdf:rest Nff226d9427354ca8a11d1667ee8ab938
167 N7699bf6e0b2c4596b4a9b8677a0652ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Tumor Necrosis Factor-alpha
169 rdf:type schema:DefinedTerm
170 N8139caa2f11d4eda941db3e4e6ec544e rdf:first sg:person.0700636421.39
171 rdf:rest N720213ab993f4147995c85ca345a716f
172 N879dc312f9704b70941af9393113275d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Stress, Physiological
174 rdf:type schema:DefinedTerm
175 N906cf3395ee84df5b38b747c29e597f0 rdf:first sg:person.01232662277.25
176 rdf:rest N96cf3d4efc1343bca13ab0fc102ab660
177 N96cf3d4efc1343bca13ab0fc102ab660 rdf:first sg:person.01004742652.26
178 rdf:rest Nac0aa2a50ed14a929fcb47fa1f303ce7
179 N98056c0d38834bf380695f4e04e0a9d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Animals
181 rdf:type schema:DefinedTerm
182 N987704e189354a0687908f4a69021618 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Oligonucleotide Array Sequence Analysis
184 rdf:type schema:DefinedTerm
185 Nac0aa2a50ed14a929fcb47fa1f303ce7 rdf:first sg:person.01274042222.36
186 rdf:rest rdf:nil
187 Nb782d195d7db42d7b6e1e4b546efa755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Gene Expression Regulation
189 rdf:type schema:DefinedTerm
190 Nc18286b24b9f4b26bb0647cf8d94b150 rdf:first sg:person.0625302327.65
191 rdf:rest N4805d7fe6f3c460ba83371517f4dc7c5
192 Nd134ee90023f4a40b2f464a4016c0558 rdf:first sg:person.01361770421.50
193 rdf:rest N906cf3395ee84df5b38b747c29e597f0
194 Nd6fa29fb5cdf462482b78a44a68ed48b schema:volumeNumber 11
195 rdf:type schema:PublicationVolume
196 Nd94ad2d13e964f088b44752a65504df2 schema:name dimensions_id
197 schema:value pub.1032976161
198 rdf:type schema:PropertyValue
199 Nd95b3380069241c9a756c95d39b8ecf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Gene Regulatory Networks
201 rdf:type schema:DefinedTerm
202 Ne026e0a51e8142c48542710bad01166a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Gene Expression Profiling
204 rdf:type schema:DefinedTerm
205 Neadf32da52e8422083229b4642f4e414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name p38 Mitogen-Activated Protein Kinases
207 rdf:type schema:DefinedTerm
208 Nf0c7743bed094546b4eccc200058e797 schema:name Springer Nature - SN SciGraph project
209 rdf:type schema:Organization
210 Nfc99191f788246c0bd5e8744dc3dc8f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Anisomycin
212 rdf:type schema:DefinedTerm
213 Nfcba7f8c41f04e54bc8400a0e3c04b91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Cells, Cultured
215 rdf:type schema:DefinedTerm
216 Nff226d9427354ca8a11d1667ee8ab938 rdf:first sg:person.01052555104.23
217 rdf:rest N2717852af781476ca64b4cd16d7b1527
218 Nff2a79ce374b45eba5aff4f725b2885c schema:name pubmed_id
219 schema:value 20187982
220 rdf:type schema:PropertyValue
221 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
222 schema:name Biological Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
225 schema:name Biochemistry and Cell Biology
226 rdf:type schema:DefinedTerm
227 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
228 schema:name Genetics
229 rdf:type schema:DefinedTerm
230 sg:journal.1023790 schema:issn 1471-2164
231 schema:name BMC Genomics
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.01004742652.26 schema:affiliation grid-institutes:grid.7719.8
235 schema:familyName Nebreda
236 schema:givenName Angel R
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004742652.26
238 rdf:type schema:Person
239 sg:person.01052555104.23 schema:affiliation grid-institutes:grid.7719.8
240 schema:familyName Lombardía
241 schema:givenName Luís
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052555104.23
243 rdf:type schema:Person
244 sg:person.01166344627.61 schema:affiliation grid-institutes:grid.5612.0
245 schema:familyName Joaquin
246 schema:givenName Manel
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166344627.61
248 rdf:type schema:Person
249 sg:person.01207410427.05 schema:affiliation grid-institutes:grid.5612.0
250 schema:familyName Barragan
251 schema:givenName Montserrat
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207410427.05
253 rdf:type schema:Person
254 sg:person.01232662277.25 schema:affiliation grid-institutes:grid.5612.0
255 schema:familyName Lopez-Bigas
256 schema:givenName Nuria
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232662277.25
258 rdf:type schema:Person
259 sg:person.01274042222.36 schema:affiliation grid-institutes:grid.5612.0
260 schema:familyName Posas
261 schema:givenName Francesc
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274042222.36
263 rdf:type schema:Person
264 sg:person.01361770421.50 schema:affiliation grid-institutes:grid.7719.8
265 schema:familyName Pisano
266 schema:givenName David G
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361770421.50
268 rdf:type schema:Person
269 sg:person.016327665272.47 schema:affiliation grid-institutes:grid.5612.0
270 schema:familyName Islam
271 schema:givenName Abul
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327665272.47
273 rdf:type schema:Person
274 sg:person.0625302327.65 schema:affiliation grid-institutes:grid.5612.0
275 schema:familyName Ferreiro
276 schema:givenName Isabel
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302327.65
278 rdf:type schema:Person
279 sg:person.0700636421.39 schema:affiliation grid-institutes:grid.7719.8
280 schema:familyName Gomez-Lopez
281 schema:givenName Gonzalo
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700636421.39
283 rdf:type schema:Person
284 sg:person.0710025320.18 schema:affiliation grid-institutes:grid.7719.8
285 schema:familyName Domínguez
286 schema:givenName Orlando
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710025320.18
288 rdf:type schema:Person
289 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
290 https://doi.org/10.1038/75556
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/nrc2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046607600
293 https://doi.org/10.1038/nrc2694
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/sj.onc.1210412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052904461
296 https://doi.org/10.1038/sj.onc.1210412
297 rdf:type schema:CreativeWork
298 grid-institutes:grid.5612.0 schema:alternateName Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
299 Research Unit on Biomedical Informatics. Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
300 schema:name Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
301 Research Unit on Biomedical Informatics. Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
302 rdf:type schema:Organization
303 grid-institutes:grid.7719.8 schema:alternateName Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
304 Genomics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
305 Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
306 Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
307 schema:name Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
308 Genomics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
309 Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
310 Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...