Whole genome analysis of p38 SAPK-mediated gene expression upon stress View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03-01

AUTHORS

Isabel Ferreiro, Manel Joaquin, Abul Islam, Gonzalo Gomez-Lopez, Montserrat Barragan, Luís Lombardía, Orlando Domínguez, David G Pisano, Nuria Lopez-Bigas, Angel R Nebreda, Francesc Posas

ABSTRACT

BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli. RESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. CONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress. More... »

PAGES

144-144

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-11-144

DOI

http://dx.doi.org/10.1186/1471-2164-11-144

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032976161

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20187982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anisomycin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dehydration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibroblasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Knockout Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Necrosis Factor-alpha", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "p38 Mitogen-Activated Protein Kinases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferreiro", 
        "givenName": "Isabel", 
        "id": "sg:person.0625302327.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302327.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joaquin", 
        "givenName": "Manel", 
        "id": "sg:person.01166344627.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166344627.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Islam", 
        "givenName": "Abul", 
        "id": "sg:person.016327665272.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327665272.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gomez-Lopez", 
        "givenName": "Gonzalo", 
        "id": "sg:person.0700636421.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700636421.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barragan", 
        "givenName": "Montserrat", 
        "id": "sg:person.01207410427.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207410427.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lombard\u00eda", 
        "givenName": "Lu\u00eds", 
        "id": "sg:person.01052555104.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052555104.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Genomics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dom\u00ednguez", 
        "givenName": "Orlando", 
        "id": "sg:person.0710025320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710025320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Bioinformatics Unit, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pisano", 
        "givenName": "David G", 
        "id": "sg:person.01361770421.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361770421.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Research Unit on Biomedical Informatics. Departament de Ci\u00e8ncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez-Bigas", 
        "givenName": "Nuria", 
        "id": "sg:person.01232662277.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232662277.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7719.8", 
          "name": [
            "Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncol\u00f3gicas (CNIO), Melchor Fern\u00e1ndez Almagro 3, Madrid 28029, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nebreda", 
        "givenName": "Angel R", 
        "id": "sg:person.01004742652.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004742652.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Posas", 
        "givenName": "Francesc", 
        "id": "sg:person.01274042222.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274042222.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.onc.1210412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052904461", 
          "https://doi.org/10.1038/sj.onc.1210412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046607600", 
          "https://doi.org/10.1038/nrc2694"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-01", 
    "datePublishedReg": "2010-03-01", 
    "description": "BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.\nRESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress.\nCONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2164-11-144", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "p38 stress-activated protein kinase", 
      "stress-activated protein kinase", 
      "mouse embryonic fibroblasts", 
      "early gene expression program", 
      "gene expression", 
      "genome-wide transcriptional analysis", 
      "cell adaptation", 
      "stress-induced transcriptional responses", 
      "stress-responsive genes", 
      "whole genome expression analysis", 
      "gene expression programs", 
      "whole genome analysis", 
      "genome expression analysis", 
      "SAPK signaling", 
      "expression programs", 
      "transcriptional control", 
      "transcriptional response", 
      "transcriptional analysis", 
      "genome analysis", 
      "transcription factors", 
      "protein kinase", 
      "embryonic fibroblasts", 
      "expression analysis", 
      "KO cells", 
      "molecular mechanisms", 
      "chemical inhibitors", 
      "early genes", 
      "genes", 
      "environmental changes", 
      "protein synthesis inhibitor anisomycin", 
      "family member present", 
      "activation kinetics", 
      "common response", 
      "specific stimuli", 
      "cells", 
      "expression", 
      "different stimuli", 
      "p38alpha", 
      "activation", 
      "inhibitor treatment", 
      "cytokine TNFalpha", 
      "kinase", 
      "adaptation", 
      "signaling", 
      "p38", 
      "stress", 
      "anisomycin", 
      "regulation", 
      "response", 
      "fibroblasts", 
      "inhibitors", 
      "selective response", 
      "important set", 
      "mechanism", 
      "analysis", 
      "TNFalpha", 
      "overlap", 
      "changes", 
      "stimuli", 
      "ability", 
      "insult", 
      "pattern responses", 
      "set", 
      "addition", 
      "factors", 
      "treatment", 
      "control", 
      "kinetics", 
      "varies", 
      "present", 
      "contribution", 
      "preparation", 
      "overall set", 
      "dependency", 
      "good overlap", 
      "program", 
      "time", 
      "p38 SAPK signalling", 
      "different p38 SAPK", 
      "synthesis inhibitor anisomycin", 
      "inhibitor anisomycin", 
      "p38alpha SAPK", 
      "complex gene pattern response", 
      "gene pattern response", 
      "contribution of p38alpha", 
      "major p38 family member present", 
      "p38 family member present", 
      "member present", 
      "overall stress-induced transcriptional response", 
      "p38alpha deficient (p38alpha-/-) MEFs", 
      "deficient (p38alpha-/-) MEFs", 
      "p38 SAPK dependency", 
      "SAPK dependency", 
      "SAPK varies", 
      "restricted common response", 
      "continuous extra-cellular changes", 
      "extra-cellular changes"
    ], 
    "name": "Whole genome analysis of p38 SAPK-mediated gene expression upon stress", 
    "pagination": "144-144", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032976161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-11-144"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20187982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-11-144", 
      "https://app.dimensions.ai/details/publication/pub.1032976161"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2164-11-144"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-144'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      22 PREDICATES      141 URIs      129 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-11-144 schema:about N17d2b5d8dfb54580bd1b88f550a6b5eb
2 N1c66ec22e3624622b0fce930ec11930f
3 N20b3522fb76446f982b95c36069c93c4
4 N21f660cbb62e4c11934bf494f03e0078
5 N3bac118327dd48658615963e4aa9bbad
6 N5125c5e57cc8449cb0e40481180bb7c0
7 N7b6302ee636a4ba889cd3f978eb32ead
8 N89640eea56114fb68684640b20978082
9 N8aca5ddf88774b049cc8195690f7496c
10 Na8f329fea5434e5e8c953c934130fdaa
11 Ndcce0ef1ecf8454ba1037e91b37f9363
12 Ndd10ba1c55c54cbb813bd60eb887c0cd
13 Ne52a2291e1634e3badfc5670a262d19e
14 Ne566a484d2b843939ead343d29c062bc
15 anzsrc-for:06
16 anzsrc-for:0601
17 anzsrc-for:0604
18 schema:author N89f48837afa64251b8147ad11dbbefc6
19 schema:citation sg:pub.10.1038/75556
20 sg:pub.10.1038/nrc2694
21 sg:pub.10.1038/sj.onc.1210412
22 schema:datePublished 2010-03-01
23 schema:datePublishedReg 2010-03-01
24 schema:description BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli. RESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. CONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N72ce7263eff546b9892176ff5dfdcd35
29 Na9a5e8c3d51a4fc199323ba45848be6d
30 sg:journal.1023790
31 schema:keywords KO cells
32 SAPK dependency
33 SAPK signaling
34 SAPK varies
35 TNFalpha
36 ability
37 activation
38 activation kinetics
39 adaptation
40 addition
41 analysis
42 anisomycin
43 cell adaptation
44 cells
45 changes
46 chemical inhibitors
47 common response
48 complex gene pattern response
49 continuous extra-cellular changes
50 contribution
51 contribution of p38alpha
52 control
53 cytokine TNFalpha
54 deficient (p38alpha-/-) MEFs
55 dependency
56 different p38 SAPK
57 different stimuli
58 early gene expression program
59 early genes
60 embryonic fibroblasts
61 environmental changes
62 expression
63 expression analysis
64 expression programs
65 extra-cellular changes
66 factors
67 family member present
68 fibroblasts
69 gene expression
70 gene expression programs
71 gene pattern response
72 genes
73 genome analysis
74 genome expression analysis
75 genome-wide transcriptional analysis
76 good overlap
77 important set
78 inhibitor anisomycin
79 inhibitor treatment
80 inhibitors
81 insult
82 kinase
83 kinetics
84 major p38 family member present
85 mechanism
86 member present
87 molecular mechanisms
88 mouse embryonic fibroblasts
89 overall set
90 overall stress-induced transcriptional response
91 overlap
92 p38
93 p38 SAPK dependency
94 p38 SAPK signalling
95 p38 family member present
96 p38 stress-activated protein kinase
97 p38alpha
98 p38alpha SAPK
99 p38alpha deficient (p38alpha-/-) MEFs
100 pattern responses
101 preparation
102 present
103 program
104 protein kinase
105 protein synthesis inhibitor anisomycin
106 regulation
107 response
108 restricted common response
109 selective response
110 set
111 signaling
112 specific stimuli
113 stimuli
114 stress
115 stress-activated protein kinase
116 stress-induced transcriptional responses
117 stress-responsive genes
118 synthesis inhibitor anisomycin
119 time
120 transcription factors
121 transcriptional analysis
122 transcriptional control
123 transcriptional response
124 treatment
125 varies
126 whole genome analysis
127 whole genome expression analysis
128 schema:name Whole genome analysis of p38 SAPK-mediated gene expression upon stress
129 schema:pagination 144-144
130 schema:productId N3927d57c526f4531b0b15fefee137d1c
131 N78196a7bcefe4f34a7b51544fdbeacc4
132 Ne16e3ec9f3a340349405bafba7c83854
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032976161
134 https://doi.org/10.1186/1471-2164-11-144
135 schema:sdDatePublished 2021-11-01T18:15
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N6db84904d82942e39812f6637d30057f
138 schema:url https://doi.org/10.1186/1471-2164-11-144
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N1729e1a71e51429fa24c2f140b9ab193 rdf:first sg:person.01052555104.23
143 rdf:rest Nfcbbdf5ed3554a03bbddaeef36078158
144 N17d2b5d8dfb54580bd1b88f550a6b5eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Gene Regulatory Networks
146 rdf:type schema:DefinedTerm
147 N19d3b51bc60f45589c288d20f6723040 rdf:first sg:person.01207410427.05
148 rdf:rest N1729e1a71e51429fa24c2f140b9ab193
149 N1c66ec22e3624622b0fce930ec11930f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Mice
151 rdf:type schema:DefinedTerm
152 N20b3522fb76446f982b95c36069c93c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Fibroblasts
154 rdf:type schema:DefinedTerm
155 N21f660cbb62e4c11934bf494f03e0078 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Tumor Necrosis Factor-alpha
157 rdf:type schema:DefinedTerm
158 N3927d57c526f4531b0b15fefee137d1c schema:name dimensions_id
159 schema:value pub.1032976161
160 rdf:type schema:PropertyValue
161 N3bac118327dd48658615963e4aa9bbad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Gene Expression Profiling
163 rdf:type schema:DefinedTerm
164 N5125c5e57cc8449cb0e40481180bb7c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Oligonucleotide Array Sequence Analysis
166 rdf:type schema:DefinedTerm
167 N6db84904d82942e39812f6637d30057f schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 N72ce7263eff546b9892176ff5dfdcd35 schema:issueNumber 1
170 rdf:type schema:PublicationIssue
171 N78196a7bcefe4f34a7b51544fdbeacc4 schema:name pubmed_id
172 schema:value 20187982
173 rdf:type schema:PropertyValue
174 N7b6302ee636a4ba889cd3f978eb32ead schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Anisomycin
176 rdf:type schema:DefinedTerm
177 N88e1eb4e6a5843a884aed7325eb212db rdf:first sg:person.01232662277.25
178 rdf:rest Nb418872e6b0940aea09e1b216af720ec
179 N89640eea56114fb68684640b20978082 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Gene Expression Regulation
181 rdf:type schema:DefinedTerm
182 N89f48837afa64251b8147ad11dbbefc6 rdf:first sg:person.0625302327.65
183 rdf:rest Nf9bae3ec29b84ab2b4bcaecd3671b0d4
184 N8aca5ddf88774b049cc8195690f7496c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Gene Knockout Techniques
186 rdf:type schema:DefinedTerm
187 Na753a39240374b0abe4b7c4fc4a3477b rdf:first sg:person.01361770421.50
188 rdf:rest N88e1eb4e6a5843a884aed7325eb212db
189 Na8f329fea5434e5e8c953c934130fdaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Animals
191 rdf:type schema:DefinedTerm
192 Na9a5e8c3d51a4fc199323ba45848be6d schema:volumeNumber 11
193 rdf:type schema:PublicationVolume
194 Nb3e4646b8705451e8a2b5ee2bd57ca67 rdf:first sg:person.016327665272.47
195 rdf:rest Nfa19033c91b54c53976f357d04f65bf3
196 Nb418872e6b0940aea09e1b216af720ec rdf:first sg:person.01004742652.26
197 rdf:rest Nbc6b7260207c4e66953980db712290e4
198 Nbc6b7260207c4e66953980db712290e4 rdf:first sg:person.01274042222.36
199 rdf:rest rdf:nil
200 Ndcce0ef1ecf8454ba1037e91b37f9363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Stress, Physiological
202 rdf:type schema:DefinedTerm
203 Ndd10ba1c55c54cbb813bd60eb887c0cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Cells, Cultured
205 rdf:type schema:DefinedTerm
206 Ne16e3ec9f3a340349405bafba7c83854 schema:name doi
207 schema:value 10.1186/1471-2164-11-144
208 rdf:type schema:PropertyValue
209 Ne52a2291e1634e3badfc5670a262d19e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Dehydration
211 rdf:type schema:DefinedTerm
212 Ne566a484d2b843939ead343d29c062bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name p38 Mitogen-Activated Protein Kinases
214 rdf:type schema:DefinedTerm
215 Nf9bae3ec29b84ab2b4bcaecd3671b0d4 rdf:first sg:person.01166344627.61
216 rdf:rest Nb3e4646b8705451e8a2b5ee2bd57ca67
217 Nfa19033c91b54c53976f357d04f65bf3 rdf:first sg:person.0700636421.39
218 rdf:rest N19d3b51bc60f45589c288d20f6723040
219 Nfcbbdf5ed3554a03bbddaeef36078158 rdf:first sg:person.0710025320.18
220 rdf:rest Na753a39240374b0abe4b7c4fc4a3477b
221 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
222 schema:name Biological Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
225 schema:name Biochemistry and Cell Biology
226 rdf:type schema:DefinedTerm
227 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
228 schema:name Genetics
229 rdf:type schema:DefinedTerm
230 sg:journal.1023790 schema:issn 1471-2164
231 schema:name BMC Genomics
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.01004742652.26 schema:affiliation grid-institutes:grid.7719.8
235 schema:familyName Nebreda
236 schema:givenName Angel R
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004742652.26
238 rdf:type schema:Person
239 sg:person.01052555104.23 schema:affiliation grid-institutes:grid.7719.8
240 schema:familyName Lombardía
241 schema:givenName Luís
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052555104.23
243 rdf:type schema:Person
244 sg:person.01166344627.61 schema:affiliation grid-institutes:grid.5612.0
245 schema:familyName Joaquin
246 schema:givenName Manel
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166344627.61
248 rdf:type schema:Person
249 sg:person.01207410427.05 schema:affiliation grid-institutes:grid.5612.0
250 schema:familyName Barragan
251 schema:givenName Montserrat
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207410427.05
253 rdf:type schema:Person
254 sg:person.01232662277.25 schema:affiliation grid-institutes:grid.5612.0
255 schema:familyName Lopez-Bigas
256 schema:givenName Nuria
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232662277.25
258 rdf:type schema:Person
259 sg:person.01274042222.36 schema:affiliation grid-institutes:grid.5612.0
260 schema:familyName Posas
261 schema:givenName Francesc
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274042222.36
263 rdf:type schema:Person
264 sg:person.01361770421.50 schema:affiliation grid-institutes:grid.7719.8
265 schema:familyName Pisano
266 schema:givenName David G
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361770421.50
268 rdf:type schema:Person
269 sg:person.016327665272.47 schema:affiliation grid-institutes:grid.5612.0
270 schema:familyName Islam
271 schema:givenName Abul
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327665272.47
273 rdf:type schema:Person
274 sg:person.0625302327.65 schema:affiliation grid-institutes:grid.5612.0
275 schema:familyName Ferreiro
276 schema:givenName Isabel
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302327.65
278 rdf:type schema:Person
279 sg:person.0700636421.39 schema:affiliation grid-institutes:grid.7719.8
280 schema:familyName Gomez-Lopez
281 schema:givenName Gonzalo
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700636421.39
283 rdf:type schema:Person
284 sg:person.0710025320.18 schema:affiliation grid-institutes:grid.7719.8
285 schema:familyName Domínguez
286 schema:givenName Orlando
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710025320.18
288 rdf:type schema:Person
289 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
290 https://doi.org/10.1038/75556
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/nrc2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046607600
293 https://doi.org/10.1038/nrc2694
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/sj.onc.1210412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052904461
296 https://doi.org/10.1038/sj.onc.1210412
297 rdf:type schema:CreativeWork
298 grid-institutes:grid.5612.0 schema:alternateName Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
299 Research Unit on Biomedical Informatics. Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
300 schema:name Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
301 Research Unit on Biomedical Informatics. Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain
302 rdf:type schema:Organization
303 grid-institutes:grid.7719.8 schema:alternateName Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
304 Genomics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
305 Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
306 Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
307 schema:name Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
308 Genomics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
309 Molecular Diagnostics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
310 Signalling and Cell Cycle Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...