Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Adam Labadorf, Alicia Link, Mark F Rogers, Julie Thomas, Anireddy SN Reddy, Asa Ben-Hur

ABSTRACT

BACKGROUND: Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. RESULTS: Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. CONCLUSIONS: The extent of AS in Chlamydomonas that we observed is much smaller than observed in land plants, but is much higher than in simple unicellular heterotrophic eukaryotes. The percentage of different alternative splicing events is similar to flowering plants. Prevalence of constitutive and alternative splicing in Chlamydomonas, together with its simplicity, many available public resources, and well developed genetic and molecular tools for this organism make it an excellent model system to elucidate the mechanisms involved in regulated splicing in photosynthetic eukaryotes. More... »

PAGES

114

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-11-114

DOI

http://dx.doi.org/10.1186/1471-2164-11-114

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013023068

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20163725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas reinhardtii", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Algal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Introns", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Computer Science Department, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Labadorf", 
        "givenName": "Adam", 
        "id": "sg:person.0743364351.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743364351.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Link", 
        "givenName": "Alicia", 
        "id": "sg:person.01116102717.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116102717.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Computer Science Department, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Mark F", 
        "id": "sg:person.01164216117.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164216117.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Julie", 
        "id": "sg:person.0651055647.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651055647.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "Anireddy SN", 
        "id": "sg:person.014717674532.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717674532.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Computer Science Department, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Hur", 
        "givenName": "Asa", 
        "id": "sg:person.01242755504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1097-2765(00)80240-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000138961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msj118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001932906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0406123102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002398351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002953427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76776-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004956307", 
          "https://doi.org/10.1007/978-3-540-76776-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biochem.76.050106.093909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005026078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.105.037069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006180813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006260064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2006.03020.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006658941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.026708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007202281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008352250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.108.116137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008958003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973232", 
          "https://doi.org/10.1186/1471-2164-7-327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009574243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.321305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009580150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2006.02802.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010155848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1143609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010955799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011641348", 
          "https://doi.org/10.1038/nprot.2008.133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0602039103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011889085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2660805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012507220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013113998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.107.098640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014338031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.03065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016418680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.03065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016418680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0808902106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016683893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.849004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017527896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(92)90424-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017979912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.179101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021865951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.179101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021865951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.053678.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024020535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0705786105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024193478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0102-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025102244", 
          "https://doi.org/10.1038/ng0102-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0102-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025102244", 
          "https://doi.org/10.1038/ng0102-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.58.032806.103754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027253654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1360-1385(00)01595-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027875788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1606907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028945817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20081501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029061781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20081501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029061781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m608854200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029513678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030633547", 
          "https://doi.org/10.1038/nature05676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03492.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034214799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.010896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036211638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200600208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037933518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1399-3054.2002.1160101.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040426346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.085605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040504341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.085605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040504341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041293001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2001.01100.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041756899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042225606", 
          "https://doi.org/10.1038/nrm1310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042225606", 
          "https://doi.org/10.1038/nrm1310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biochem.72.121801.161720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045905529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.606402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048144655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049709064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283464", 
          "https://doi.org/10.1038/ng.259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcm069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050548564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcd006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051865235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-2689(01)80004-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054660224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1355838200001163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054923484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.13.12.2823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060842141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3871537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070469251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.195301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074949085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-77374-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077626951", 
          "https://doi.org/10.1007/978-0-387-77374-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-77374-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077626951", 
          "https://doi.org/10.1007/978-0-387-77374-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-77374-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077626951", 
          "https://doi.org/10.1007/978-0-387-77374-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/20013591099272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092581837"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs.\nRESULTS: Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy.\nCONCLUSIONS: The extent of AS in Chlamydomonas that we observed is much smaller than observed in land plants, but is much higher than in simple unicellular heterotrophic eukaryotes. The percentage of different alternative splicing events is similar to flowering plants. Prevalence of constitutive and alternative splicing in Chlamydomonas, together with its simplicity, many available public resources, and well developed genetic and molecular tools for this organism make it an excellent model system to elucidate the mechanisms involved in regulated splicing in photosynthetic eukaryotes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-11-114", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3084330", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii", 
    "pagination": "114", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e0a7063fd00e30d88929c4978900b5caf2e4b809e30106b8df021dd57327270"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20163725"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-11-114"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013023068"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-11-114", 
      "https://app.dimensions.ai/details/publication/pub.1013023068"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-11-114"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-114'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-114'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-114'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-11-114'


 

This table displays all metadata directly associated to this object as RDF triples.

332 TRIPLES      21 PREDICATES      98 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-11-114 schema:about N29e6381c85474c48b35b6ae16edd9f2a
2 N3291ef7ae3584f8783a8a12586635c11
3 N4ba3f66d82e24424a32fbceb1143a202
4 N76d22ba3ee2440d29a3705caa2439172
5 N7bba66bbc6f749b88b29804ea9122342
6 N85fa78398f3d4398bff963b1419ac117
7 N8cef1cfaa29d4c02ba9844470d9648de
8 Nced0088fca874e4297c3e896a01c77d5
9 Ned175cf66a564b18b45312a7b02f44bf
10 Nf19227037f2c4cbb96265448ab418673
11 Nf6613a01ca4f400d949a61e2d87f402d
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N10fcf85ee9c7461cbc274da2c104919c
15 schema:citation sg:pub.10.1007/978-0-387-77374-2_12
16 sg:pub.10.1007/978-3-540-76776-3_14
17 sg:pub.10.1038/nature05676
18 sg:pub.10.1038/ng.259
19 sg:pub.10.1038/ng0102-13
20 sg:pub.10.1038/nprot.2008.133
21 sg:pub.10.1038/nrm1310
22 sg:pub.10.1186/1471-2164-7-327
23 https://doi.org/10.1002/pmic.200600208
24 https://doi.org/10.1016/0092-8674(92)90424-b
25 https://doi.org/10.1016/s0735-2689(01)80004-6
26 https://doi.org/10.1016/s1097-2765(00)80240-3
27 https://doi.org/10.1016/s1360-1385(00)01595-8
28 https://doi.org/10.1017/s1355838200001163
29 https://doi.org/10.1034/j.1399-3054.2002.1160101.x
30 https://doi.org/10.1042/bj20081501
31 https://doi.org/10.1046/j.1365-313x.2001.01100.x
32 https://doi.org/10.1073/pnas.0406123102
33 https://doi.org/10.1073/pnas.0602039103
34 https://doi.org/10.1073/pnas.0705786105
35 https://doi.org/10.1073/pnas.0808902106
36 https://doi.org/10.1074/jbc.m608854200
37 https://doi.org/10.1080/20013591099272
38 https://doi.org/10.1093/bioinformatics/18.suppl_1.s181
39 https://doi.org/10.1093/bioinformatics/btn361
40 https://doi.org/10.1093/molbev/msj118
41 https://doi.org/10.1093/nar/gkh845
42 https://doi.org/10.1093/nar/gkl924
43 https://doi.org/10.1093/nar/gkn847
44 https://doi.org/10.1093/pcp/pcd006
45 https://doi.org/10.1093/pcp/pcm069
46 https://doi.org/10.1101/gad.1606907
47 https://doi.org/10.1101/gad.321305
48 https://doi.org/10.1101/gr.053678.106
49 https://doi.org/10.1101/gr.195301
50 https://doi.org/10.1101/gr.229202
51 https://doi.org/10.1101/gr.606402
52 https://doi.org/10.1101/gr.849004
53 https://doi.org/10.1104/pp.010896
54 https://doi.org/10.1104/pp.107.098640
55 https://doi.org/10.1104/pp.108.116137
56 https://doi.org/10.1105/tpc.104.026708
57 https://doi.org/10.1105/tpc.105.037069
58 https://doi.org/10.1105/tpc.13.12.2823
59 https://doi.org/10.1111/j.1365-313x.2006.02802.x
60 https://doi.org/10.1111/j.1365-313x.2006.03020.x
61 https://doi.org/10.1111/j.1365-313x.2008.03492.x
62 https://doi.org/10.1111/j.1469-8137.2009.03065.x
63 https://doi.org/10.1126/science.1073774
64 https://doi.org/10.1126/science.1090100
65 https://doi.org/10.1126/science.1143609
66 https://doi.org/10.1146/annurev.arplant.58.032806.103754
67 https://doi.org/10.1146/annurev.biochem.72.121801.161720
68 https://doi.org/10.1146/annurev.biochem.76.050106.093909
69 https://doi.org/10.1261/rna.2660805
70 https://doi.org/10.1534/genetics.104.179101
71 https://doi.org/10.1534/genetics.107.085605
72 https://doi.org/10.2307/3871537
73 schema:datePublished 2010-12
74 schema:datePublishedReg 2010-12-01
75 schema:description BACKGROUND: Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. RESULTS: Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. CONCLUSIONS: The extent of AS in Chlamydomonas that we observed is much smaller than observed in land plants, but is much higher than in simple unicellular heterotrophic eukaryotes. The percentage of different alternative splicing events is similar to flowering plants. Prevalence of constitutive and alternative splicing in Chlamydomonas, together with its simplicity, many available public resources, and well developed genetic and molecular tools for this organism make it an excellent model system to elucidate the mechanisms involved in regulated splicing in photosynthetic eukaryotes.
76 schema:genre research_article
77 schema:inLanguage en
78 schema:isAccessibleForFree true
79 schema:isPartOf N654193fb7b954354a907b620e7f2481e
80 Ned59326885534b6bbf3e4e3446bf001c
81 sg:journal.1023790
82 schema:name Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii
83 schema:pagination 114
84 schema:productId N514de53328ca40e0af768f64a8a7fcee
85 N675dc6ed05594e37ac2cd24d3d19bbce
86 N8843d873c1974e54939c8e5e69139ab0
87 Na992fa55eb8a4db5889ffbe85924560e
88 Nb8baedf3a98e4e98ba1664712ea9521b
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013023068
90 https://doi.org/10.1186/1471-2164-11-114
91 schema:sdDatePublished 2019-04-10T16:48
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nda181c7cf65a420cb0843828e3a836f8
94 schema:url http://link.springer.com/10.1186%2F1471-2164-11-114
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N098292f50daa4c6d86ce60e1db5d49d6 rdf:first sg:person.0651055647.19
99 rdf:rest N6d3cf284cc3b4ad89c16a40cb5b48d1a
100 N10fcf85ee9c7461cbc274da2c104919c rdf:first sg:person.0743364351.31
101 rdf:rest Nddd5e0fbab014520ba04a8519149551e
102 N29e6381c85474c48b35b6ae16edd9f2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Computational Biology
104 rdf:type schema:DefinedTerm
105 N3291ef7ae3584f8783a8a12586635c11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Introns
107 rdf:type schema:DefinedTerm
108 N4a1a78c8e9104b00b61918c94ba6d36f rdf:first sg:person.01242755504.30
109 rdf:rest rdf:nil
110 N4ba3f66d82e24424a32fbceb1143a202 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Base Composition
112 rdf:type schema:DefinedTerm
113 N514de53328ca40e0af768f64a8a7fcee schema:name dimensions_id
114 schema:value pub.1013023068
115 rdf:type schema:PropertyValue
116 N654193fb7b954354a907b620e7f2481e schema:volumeNumber 11
117 rdf:type schema:PublicationVolume
118 N675dc6ed05594e37ac2cd24d3d19bbce schema:name pubmed_id
119 schema:value 20163725
120 rdf:type schema:PropertyValue
121 N6d3cf284cc3b4ad89c16a40cb5b48d1a rdf:first sg:person.014717674532.04
122 rdf:rest N4a1a78c8e9104b00b61918c94ba6d36f
123 N76d22ba3ee2440d29a3705caa2439172 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Alternative Splicing
125 rdf:type schema:DefinedTerm
126 N7bba66bbc6f749b88b29804ea9122342 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Exons
128 rdf:type schema:DefinedTerm
129 N808e27bbc2b14cbeac3c09e80868911a rdf:first sg:person.01164216117.49
130 rdf:rest N098292f50daa4c6d86ce60e1db5d49d6
131 N85fa78398f3d4398bff963b1419ac117 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name DNA, Algal
133 rdf:type schema:DefinedTerm
134 N8843d873c1974e54939c8e5e69139ab0 schema:name doi
135 schema:value 10.1186/1471-2164-11-114
136 rdf:type schema:PropertyValue
137 N8cef1cfaa29d4c02ba9844470d9648de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Expressed Sequence Tags
139 rdf:type schema:DefinedTerm
140 Na992fa55eb8a4db5889ffbe85924560e schema:name readcube_id
141 schema:value 3e0a7063fd00e30d88929c4978900b5caf2e4b809e30106b8df021dd57327270
142 rdf:type schema:PropertyValue
143 Nb8baedf3a98e4e98ba1664712ea9521b schema:name nlm_unique_id
144 schema:value 100965258
145 rdf:type schema:PropertyValue
146 Nced0088fca874e4297c3e896a01c77d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Genomics
148 rdf:type schema:DefinedTerm
149 Nda181c7cf65a420cb0843828e3a836f8 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 Nddd5e0fbab014520ba04a8519149551e rdf:first sg:person.01116102717.25
152 rdf:rest N808e27bbc2b14cbeac3c09e80868911a
153 Ned175cf66a564b18b45312a7b02f44bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Chlamydomonas reinhardtii
155 rdf:type schema:DefinedTerm
156 Ned59326885534b6bbf3e4e3446bf001c schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 Nf19227037f2c4cbb96265448ab418673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Software
160 rdf:type schema:DefinedTerm
161 Nf6613a01ca4f400d949a61e2d87f402d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Sequence Analysis, DNA
163 rdf:type schema:DefinedTerm
164 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
165 schema:name Biological Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
168 schema:name Genetics
169 rdf:type schema:DefinedTerm
170 sg:grant.3084330 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-11-114
171 rdf:type schema:MonetaryGrant
172 sg:journal.1023790 schema:issn 1471-2164
173 schema:name BMC Genomics
174 rdf:type schema:Periodical
175 sg:person.01116102717.25 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
176 schema:familyName Link
177 schema:givenName Alicia
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116102717.25
179 rdf:type schema:Person
180 sg:person.01164216117.49 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
181 schema:familyName Rogers
182 schema:givenName Mark F
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164216117.49
184 rdf:type schema:Person
185 sg:person.01242755504.30 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
186 schema:familyName Ben-Hur
187 schema:givenName Asa
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30
189 rdf:type schema:Person
190 sg:person.014717674532.04 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
191 schema:familyName Reddy
192 schema:givenName Anireddy SN
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717674532.04
194 rdf:type schema:Person
195 sg:person.0651055647.19 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
196 schema:familyName Thomas
197 schema:givenName Julie
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651055647.19
199 rdf:type schema:Person
200 sg:person.0743364351.31 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
201 schema:familyName Labadorf
202 schema:givenName Adam
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743364351.31
204 rdf:type schema:Person
205 sg:pub.10.1007/978-0-387-77374-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077626951
206 https://doi.org/10.1007/978-0-387-77374-2_12
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/978-3-540-76776-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004956307
209 https://doi.org/10.1007/978-3-540-76776-3_14
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nature05676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030633547
212 https://doi.org/10.1038/nature05676
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ng.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283464
215 https://doi.org/10.1038/ng.259
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ng0102-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025102244
218 https://doi.org/10.1038/ng0102-13
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nprot.2008.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011641348
221 https://doi.org/10.1038/nprot.2008.133
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nrm1310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042225606
224 https://doi.org/10.1038/nrm1310
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1471-2164-7-327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973232
227 https://doi.org/10.1186/1471-2164-7-327
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/pmic.200600208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037933518
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/0092-8674(92)90424-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1017979912
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0735-2689(01)80004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054660224
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s1097-2765(00)80240-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000138961
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s1360-1385(00)01595-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027875788
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1017/s1355838200001163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054923484
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1034/j.1399-3054.2002.1160101.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040426346
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1042/bj20081501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029061781
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1046/j.1365-313x.2001.01100.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041756899
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.0406123102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002398351
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1073/pnas.0602039103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011889085
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1073/pnas.0705786105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024193478
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1073/pnas.0808902106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016683893
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1074/jbc.m608854200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029513678
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1080/20013591099272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092581837
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/bioinformatics/18.suppl_1.s181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017527896
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/bioinformatics/btn361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041293001
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/molbev/msj118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001932906
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/gkh845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008352250
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/nar/gkl924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002953427
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/nar/gkn847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013113998
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/pcp/pcd006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051865235
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1093/pcp/pcm069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050548564
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1101/gad.1606907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028945817
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1101/gad.321305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009580150
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1101/gr.053678.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024020535
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1101/gr.195301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074949085
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1101/gr.229202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006260064
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1101/gr.606402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048144655
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1101/gr.849004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890117
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1104/pp.010896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036211638
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1104/pp.107.098640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014338031
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1104/pp.108.116137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008958003
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1105/tpc.104.026708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007202281
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1105/tpc.105.037069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006180813
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1105/tpc.13.12.2823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060842141
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1111/j.1365-313x.2006.02802.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010155848
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1111/j.1365-313x.2006.03020.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006658941
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1111/j.1365-313x.2008.03492.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034214799
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1111/j.1469-8137.2009.03065.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016418680
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1126/science.1073774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049709064
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1126/science.1090100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009574243
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1126/science.1143609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010955799
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1146/annurev.arplant.58.032806.103754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027253654
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1146/annurev.biochem.72.121801.161720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045905529
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1146/annurev.biochem.76.050106.093909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005026078
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1261/rna.2660805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012507220
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1534/genetics.104.179101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021865951
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1534/genetics.107.085605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040504341
326 rdf:type schema:CreativeWork
327 https://doi.org/10.2307/3871537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070469251
328 rdf:type schema:CreativeWork
329 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
330 schema:name Computer Science Department, Colorado State University, Fort Collins, CO, USA
331 Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, USA
332 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...