Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Miguel Pérez-Enciso, André LJ Ferraz, Ana Ojeda, Manel López-Béjar

ABSTRACT

BACKGROUND: Transcriptome variability is due to genetic and environmental causes, much like any other complex phenotype. Ascertaining the transcriptome differences between individuals is an important step to understand how selection and genetic drift may affect gene expression. To that end, extant divergent livestock breeds offer an ideal genetic material. RESULTS: We have analyzed with microarrays five tissues from the endocrine axis (hypothalamus, adenohypophysis, thyroid gland, gonads and fat tissue) of 16 pigs from both sexes pertaining to four extreme breeds (Duroc, Large White, Iberian and a cross with SinoEuropean hybrid line). Using a Bayesian linear model approach, we observed that the largest breed variability corresponded to the male gonads, and was larger than at the remaining tissues, including ovaries. Measurement of sex hormones in peripheral blood at slaughter did not detect any breed-related differences. Not unexpectedly, the gonads were the tissue with the largest number of sex biased genes. There was a strong correlation between sex and breed bias expression, although the most breed biased genes were not the most sex biased genes. A combined analysis of connectivity and differential expression suggested three biological processes as being primarily different between breeds: spermatogenesis, muscle differentiation and several metabolic processes. CONCLUSION: These results suggest that differences across breeds in gene expression of the male gonads are larger than in other endocrine tissues in the pig. Nevertheless, the strong presence of breed biased genes in the male gonads cannot be explained solely by changes in spermatogenesis nor by differences in the reproductive tract development. More... »

PAGES

89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-10-89

DOI

http://dx.doi.org/10.1186/1471-2164-10-89

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002753054

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19239697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endocrine System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gonadal Steroid Hormones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypothalamus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pituitary Gland, Anterior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Swine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Testis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Gland", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Departament de Ci\u00e8ncia Animal i dels Aliments, Facultat de Veterin\u00e0ria, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Spain", 
            "Institut Catal\u00e0 de Recerca i Estudis Avan\u00e7ats (ICREA), C/Lluis Companys 23, 08010, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez-Enciso", 
        "givenName": "Miguel", 
        "id": "sg:person.01041433710.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Departament de Ci\u00e8ncia Animal i dels Aliments, Facultat de Veterin\u00e0ria, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Spain", 
            "Faculdade de Ci\u00eancias Agr\u00e1rias e Veterin\u00e1ria, Universidade Estadual Paulista (UNESP), 14884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferraz", 
        "givenName": "Andr\u00e9 LJ", 
        "id": "sg:person.01253360741.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253360741.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Departament de Ci\u00e8ncia Animal i dels Aliments, Facultat de Veterin\u00e0ria, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ojeda", 
        "givenName": "Ana", 
        "id": "sg:person.0626426717.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626426717.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Departament de Sanitat i d'Anatomia Animals, Facultat de Veterin\u00e1ria, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-B\u00e9jar", 
        "givenName": "Manel", 
        "id": "sg:person.01236267664.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236267664.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg2187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002543859", 
          "https://doi.org/10.1038/nrg2187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004200208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007115561", 
          "https://doi.org/10.1038/nrg2167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5217506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007457721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1095/biolreprod61.3.741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008960315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1095/biolreprod61.3.741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008960315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6800967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013744498", 
          "https://doi.org/10.1038/sj.hdy.6800967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00284151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013850414", 
          "https://doi.org/10.1007/bf00284151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014125606", 
          "https://doi.org/10.1007/0-387-29362-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014125606", 
          "https://doi.org/10.1007/0-387-29362-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018638362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2006.01460.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020537077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/frne.1997.0152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021230727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6981507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027989758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030948598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030948598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/rep.1.01169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033310473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/plac.1999.0404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034532411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-71599-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035604467", 
          "https://doi.org/10.1007/0-387-71599-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-71599-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035604467", 
          "https://doi.org/10.1007/0-387-71599-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035790850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036887487", 
          "https://doi.org/10.1186/1471-2164-9-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040212900", 
          "https://doi.org/10.1186/1471-2164-9-173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msn111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042442753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043426455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(06)11008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047145922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047655426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-3-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050623240", 
          "https://doi.org/10.1186/gb-2005-6-3-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052662045", 
          "https://doi.org/10.1186/jbiol16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672301005055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053882847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672301005055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053882847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/en.2004-1454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064247213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2004.82123430x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070882639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263758", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Transcriptome variability is due to genetic and environmental causes, much like any other complex phenotype. Ascertaining the transcriptome differences between individuals is an important step to understand how selection and genetic drift may affect gene expression. To that end, extant divergent livestock breeds offer an ideal genetic material.\nRESULTS: We have analyzed with microarrays five tissues from the endocrine axis (hypothalamus, adenohypophysis, thyroid gland, gonads and fat tissue) of 16 pigs from both sexes pertaining to four extreme breeds (Duroc, Large White, Iberian and a cross with SinoEuropean hybrid line). Using a Bayesian linear model approach, we observed that the largest breed variability corresponded to the male gonads, and was larger than at the remaining tissues, including ovaries. Measurement of sex hormones in peripheral blood at slaughter did not detect any breed-related differences. Not unexpectedly, the gonads were the tissue with the largest number of sex biased genes. There was a strong correlation between sex and breed bias expression, although the most breed biased genes were not the most sex biased genes. A combined analysis of connectivity and differential expression suggested three biological processes as being primarily different between breeds: spermatogenesis, muscle differentiation and several metabolic processes.\nCONCLUSION: These results suggest that differences across breeds in gene expression of the male gonads are larger than in other endocrine tissues in the pig. Nevertheless, the strong presence of breed biased genes in the male gonads cannot be explained solely by changes in spermatogenesis nor by differences in the reproductive tract development.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-10-89", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis", 
    "pagination": "89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d1c011054f1da73201f1d2bb3549fbbd83c1eecb2bb4a62844b3ba98f935695"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19239697"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-10-89"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002753054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-10-89", 
      "https://app.dimensions.ai/details/publication/pub.1002753054"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-10-89"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-89'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-89'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-89'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-89'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      76 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-10-89 schema:about N02ab1eb030d54eb9a059fd75dac71d96
2 N09cad98229b343a6bb72f0f039f4223b
3 N0e5491e827344c97a8d2586932934605
4 N18dd6c20dfaa4b76824b7393dcc480b2
5 N251e2b0d81df49ecaa702ccfce365728
6 N5254ee7de86545b091bda60df68b4fa0
7 N69b3055234614ad9a8d89261aa61812e
8 N6a37d1ad4e5b4034bfbfccfdf7d6df17
9 N7498fd66a9834b1e8445e39e2854e500
10 N92b25169d3ca42a79ea1b4c407e0e597
11 N96ea81827feb49b18ad2757847c5eb66
12 N9f3b6ec6dc45466cb20adbd256223542
13 Nb0befe190d944adb9f2c58a0f99911f7
14 Nca6bf763ff93452daa5a28a7043aab17
15 Ncf27fe8cb67642cc9e4277ecf5f4b0e8
16 Nd5c881fa506d4c66b69c5df595088a24
17 Nf7f5a7be7b0849faa2d1f473f87d28f1
18 anzsrc-for:06
19 anzsrc-for:0604
20 schema:author N38bcfb66cee04030913076a8361f14c9
21 schema:citation sg:pub.10.1007/0-387-29362-0
22 sg:pub.10.1007/0-387-71599-1
23 sg:pub.10.1007/bf00284151
24 sg:pub.10.1038/nrg2167
25 sg:pub.10.1038/nrg2187
26 sg:pub.10.1038/sj.hdy.6800967
27 sg:pub.10.1186/1471-2164-9-148
28 sg:pub.10.1186/1471-2164-9-173
29 sg:pub.10.1186/gb-2005-6-3-r22
30 sg:pub.10.1186/jbiol16
31 https://app.dimensions.ai/details/publication/pub.1083263758
32 https://doi.org/10.1006/frne.1997.0152
33 https://doi.org/10.1016/s0076-6879(06)11008-3
34 https://doi.org/10.1017/s0016672301005055
35 https://doi.org/10.1053/plac.1999.0404
36 https://doi.org/10.1089/10665270050514954
37 https://doi.org/10.1093/bioinformatics/btl392
38 https://doi.org/10.1093/molbev/msn111
39 https://doi.org/10.1093/nar/gkg624
40 https://doi.org/10.1093/nar/gng015
41 https://doi.org/10.1095/biolreprod61.3.741
42 https://doi.org/10.1101/gr.5217506
43 https://doi.org/10.1101/gr.6981507
44 https://doi.org/10.1111/j.1365-2052.2006.01460.x
45 https://doi.org/10.1210/en.2004-1454
46 https://doi.org/10.1371/journal.pbio.0030170
47 https://doi.org/10.1371/journal.pbio.0040072
48 https://doi.org/10.1371/journal.pgen.0020130
49 https://doi.org/10.1530/rep.1.01169
50 https://doi.org/10.2527/2004.82123430x
51 schema:datePublished 2009-12
52 schema:datePublishedReg 2009-12-01
53 schema:description BACKGROUND: Transcriptome variability is due to genetic and environmental causes, much like any other complex phenotype. Ascertaining the transcriptome differences between individuals is an important step to understand how selection and genetic drift may affect gene expression. To that end, extant divergent livestock breeds offer an ideal genetic material. RESULTS: We have analyzed with microarrays five tissues from the endocrine axis (hypothalamus, adenohypophysis, thyroid gland, gonads and fat tissue) of 16 pigs from both sexes pertaining to four extreme breeds (Duroc, Large White, Iberian and a cross with SinoEuropean hybrid line). Using a Bayesian linear model approach, we observed that the largest breed variability corresponded to the male gonads, and was larger than at the remaining tissues, including ovaries. Measurement of sex hormones in peripheral blood at slaughter did not detect any breed-related differences. Not unexpectedly, the gonads were the tissue with the largest number of sex biased genes. There was a strong correlation between sex and breed bias expression, although the most breed biased genes were not the most sex biased genes. A combined analysis of connectivity and differential expression suggested three biological processes as being primarily different between breeds: spermatogenesis, muscle differentiation and several metabolic processes. CONCLUSION: These results suggest that differences across breeds in gene expression of the male gonads are larger than in other endocrine tissues in the pig. Nevertheless, the strong presence of breed biased genes in the male gonads cannot be explained solely by changes in spermatogenesis nor by differences in the reproductive tract development.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N0306899db671418a814469a104e92d1e
58 N60491c731ba047eda985ca97f4e2b53b
59 sg:journal.1023790
60 schema:name Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis
61 schema:pagination 89
62 schema:productId N31ad630ba3e94194859f8a996857ec68
63 N439a35fe796348c1a849d072040f1c4d
64 N63b317f305344bf3b7192a718ab30e08
65 N794697a5ce3c427bae08a34639071cf2
66 N8fcbc3c774aa43759246babc27dddff8
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002753054
68 https://doi.org/10.1186/1471-2164-10-89
69 schema:sdDatePublished 2019-04-10T16:40
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nc8139b16f8444dfca5894a871c8e059c
72 schema:url http://link.springer.com/10.1186%2F1471-2164-10-89
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N02ab1eb030d54eb9a059fd75dac71d96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Oligonucleotide Array Sequence Analysis
78 rdf:type schema:DefinedTerm
79 N0306899db671418a814469a104e92d1e schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N09cad98229b343a6bb72f0f039f4223b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Gonadal Steroid Hormones
83 rdf:type schema:DefinedTerm
84 N0e5491e827344c97a8d2586932934605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Female
86 rdf:type schema:DefinedTerm
87 N1569758597504798b624579d8df66f80 rdf:first sg:person.0626426717.62
88 rdf:rest N6d7b5382018145879ba404c1250bbb0e
89 N18dd6c20dfaa4b76824b7393dcc480b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Sex Factors
91 rdf:type schema:DefinedTerm
92 N251e2b0d81df49ecaa702ccfce365728 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Gene Expression Profiling
94 rdf:type schema:DefinedTerm
95 N31ad630ba3e94194859f8a996857ec68 schema:name doi
96 schema:value 10.1186/1471-2164-10-89
97 rdf:type schema:PropertyValue
98 N38bcfb66cee04030913076a8361f14c9 rdf:first sg:person.01041433710.67
99 rdf:rest N62876a6afccc41449c98baa24d3c93b5
100 N439a35fe796348c1a849d072040f1c4d schema:name nlm_unique_id
101 schema:value 100965258
102 rdf:type schema:PropertyValue
103 N5254ee7de86545b091bda60df68b4fa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Pituitary Gland, Anterior
105 rdf:type schema:DefinedTerm
106 N60491c731ba047eda985ca97f4e2b53b schema:volumeNumber 10
107 rdf:type schema:PublicationVolume
108 N62876a6afccc41449c98baa24d3c93b5 rdf:first sg:person.01253360741.92
109 rdf:rest N1569758597504798b624579d8df66f80
110 N63b317f305344bf3b7192a718ab30e08 schema:name dimensions_id
111 schema:value pub.1002753054
112 rdf:type schema:PropertyValue
113 N69b3055234614ad9a8d89261aa61812e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Adipose Tissue
115 rdf:type schema:DefinedTerm
116 N6a37d1ad4e5b4034bfbfccfdf7d6df17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Swine
118 rdf:type schema:DefinedTerm
119 N6d7b5382018145879ba404c1250bbb0e rdf:first sg:person.01236267664.52
120 rdf:rest rdf:nil
121 N7498fd66a9834b1e8445e39e2854e500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Testis
123 rdf:type schema:DefinedTerm
124 N794697a5ce3c427bae08a34639071cf2 schema:name pubmed_id
125 schema:value 19239697
126 rdf:type schema:PropertyValue
127 N8fcbc3c774aa43759246babc27dddff8 schema:name readcube_id
128 schema:value 0d1c011054f1da73201f1d2bb3549fbbd83c1eecb2bb4a62844b3ba98f935695
129 rdf:type schema:PropertyValue
130 N92b25169d3ca42a79ea1b4c407e0e597 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Endocrine System
132 rdf:type schema:DefinedTerm
133 N96ea81827feb49b18ad2757847c5eb66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Linear Models
135 rdf:type schema:DefinedTerm
136 N9f3b6ec6dc45466cb20adbd256223542 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Hypothalamus
138 rdf:type schema:DefinedTerm
139 Nb0befe190d944adb9f2c58a0f99911f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Breeding
141 rdf:type schema:DefinedTerm
142 Nc8139b16f8444dfca5894a871c8e059c schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nca6bf763ff93452daa5a28a7043aab17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Thyroid Gland
146 rdf:type schema:DefinedTerm
147 Ncf27fe8cb67642cc9e4277ecf5f4b0e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Animals
149 rdf:type schema:DefinedTerm
150 Nd5c881fa506d4c66b69c5df595088a24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Male
152 rdf:type schema:DefinedTerm
153 Nf7f5a7be7b0849faa2d1f473f87d28f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Bayes Theorem
155 rdf:type schema:DefinedTerm
156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biological Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
160 schema:name Genetics
161 rdf:type schema:DefinedTerm
162 sg:journal.1023790 schema:issn 1471-2164
163 schema:name BMC Genomics
164 rdf:type schema:Periodical
165 sg:person.01041433710.67 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
166 schema:familyName Pérez-Enciso
167 schema:givenName Miguel
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67
169 rdf:type schema:Person
170 sg:person.01236267664.52 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
171 schema:familyName López-Béjar
172 schema:givenName Manel
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236267664.52
174 rdf:type schema:Person
175 sg:person.01253360741.92 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
176 schema:familyName Ferraz
177 schema:givenName André LJ
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253360741.92
179 rdf:type schema:Person
180 sg:person.0626426717.62 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
181 schema:familyName Ojeda
182 schema:givenName Ana
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626426717.62
184 rdf:type schema:Person
185 sg:pub.10.1007/0-387-29362-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014125606
186 https://doi.org/10.1007/0-387-29362-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/0-387-71599-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035604467
189 https://doi.org/10.1007/0-387-71599-1
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf00284151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013850414
192 https://doi.org/10.1007/bf00284151
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrg2167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007115561
195 https://doi.org/10.1038/nrg2167
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nrg2187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002543859
198 https://doi.org/10.1038/nrg2187
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/sj.hdy.6800967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013744498
201 https://doi.org/10.1038/sj.hdy.6800967
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2164-9-148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036887487
204 https://doi.org/10.1186/1471-2164-9-148
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2164-9-173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040212900
207 https://doi.org/10.1186/1471-2164-9-173
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/gb-2005-6-3-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050623240
210 https://doi.org/10.1186/gb-2005-6-3-r22
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/jbiol16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052662045
213 https://doi.org/10.1186/jbiol16
214 rdf:type schema:CreativeWork
215 https://app.dimensions.ai/details/publication/pub.1083263758 schema:CreativeWork
216 https://doi.org/10.1006/frne.1997.0152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021230727
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0076-6879(06)11008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047145922
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1017/s0016672301005055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053882847
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1053/plac.1999.0404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034532411
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1089/10665270050514954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204847
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/bioinformatics/btl392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047655426
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/molbev/msn111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042442753
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gkg624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043426455
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1095/biolreprod61.3.741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008960315
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1101/gr.5217506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007457721
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1101/gr.6981507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027989758
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1365-2052.2006.01460.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020537077
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1210/en.2004-1454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064247213
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1371/journal.pbio.0030170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004200208
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1371/journal.pbio.0040072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030948598
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pgen.0020130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035790850
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1530/rep.1.01169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033310473
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2527/2004.82123430x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882639
253 rdf:type schema:CreativeWork
254 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
255 schema:name Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
256 Faculdade de Ciências Agrárias e Veterinária, Universidade Estadual Paulista (UNESP), 14884-900, Jaboticabal, SP, Brazil
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
259 schema:name Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
260 Institut Català de Recerca i Estudis Avançats (ICREA), C/Lluis Companys 23, 08010, Barcelona, Spain
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.7080.f schema:alternateName Autonomous University of Barcelona
263 schema:name Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
264 Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinária, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...