3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Yan W Asmann, Eric W Klee, E Aubrey Thompson, Edith A Perez, Sumit Middha, Ann L Oberg, Terry M Therneau, David I Smith, Gregory A Poland, Eric D Wieben, Jean-Pierre A Kocher

ABSTRACT

BACKGROUND: Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC). RESULTS: Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. CONCLUSION: 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts. More... »

PAGES

531

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-10-531

DOI

http://dx.doi.org/10.1186/1471-2164-10-531

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005207270

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19917133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asmann", 
        "givenName": "Yan W", 
        "id": "sg:person.01046622724.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046622724.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klee", 
        "givenName": "Eric W", 
        "id": "sg:person.0625260633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625260633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "E Aubrey", 
        "id": "sg:person.012362237257.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362237257.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez", 
        "givenName": "Edith A", 
        "id": "sg:person.01151215137.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151215137.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Middha", 
        "givenName": "Sumit", 
        "id": "sg:person.01237226701.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237226701.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberg", 
        "givenName": "Ann L", 
        "id": "sg:person.0762537264.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762537264.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Therneau", 
        "givenName": "Terry M", 
        "id": "sg:person.01317720502.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317720502.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "David I", 
        "id": "sg:person.01037512302.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037512302.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Vaccine Research Group, the Program in Translational Immunovirology and Biodefense, Department of Medicine, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poland", 
        "givenName": "Gregory A", 
        "id": "sg:person.01226646442.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226646442.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Advanced Genomics Technology Center DNA sequencing lab, Mayo Clinic College of Medicine, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wieben", 
        "givenName": "Eric D", 
        "id": "sg:person.0765654161.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765654161.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocher", 
        "givenName": "Jean-Pierre A", 
        "id": "sg:person.01370515234.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370515234.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002151237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003944263", 
          "https://doi.org/10.1038/nmeth1153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009442631", 
          "https://doi.org/10.1038/nature07638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2008.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.9.081307.164359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015853776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0502-508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016616140", 
          "https://doi.org/10.1038/nbt0502-508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0502-508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016616140", 
          "https://doi.org/10.1038/nbt0502-508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037539567", 
          "https://doi.org/10.1038/nbt1236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037539567", 
          "https://doi.org/10.1038/nbt1236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1160342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042163407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048416659", 
          "https://doi.org/10.1038/nmeth1157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586936", 
          "https://doi.org/10.1038/nmeth.1223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051832806", 
          "https://doi.org/10.1186/1471-2164-10-264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8091218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082415674", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC).\nRESULTS: Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays.\nCONCLUSION: 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-10-531", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705122", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2634009", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2452552", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5246518", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2455266", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer", 
    "pagination": "531", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18cf18d2516ad2fc16f2e2514d63200203cb2a688254d4bc65e6d67c1a81af0a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19917133"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-10-531"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005207270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-10-531", 
      "https://app.dimensions.ai/details/publication/pub.1005207270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-10-531"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-531'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-531'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-531'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-531'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      62 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-10-531 schema:about N113b733093624fc999ae18f65a9bdf34
2 N1243926226de4edcbad20cd9f997b5dc
3 N148423f0d9c443eb8f3a08abac69c48f
4 N347c7ab62ee340ab9ad027f1eeaaa80f
5 N7356847d86ce4c0994dbeab55cf90c88
6 N8fe6a2c3d89c4f3798875733edaba58e
7 Na7c2e3978cd04060ae6b227ef82268be
8 Nace03cbdebcd48eaaad401d7fb91d2b9
9 Nadc9d7a509b9416791e037fd2c90a590
10 Nb15832b5da8f4a8285a460a75535d983
11 Ne8494ef10ce7499b83d81dec8f38cc72
12 Ned39190e8d8f44149a5226436fb3fb69
13 Nf510b0a2bdde4d4586353b487cb6e6d6
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N0172d22fcb36472aa2ba3cc03441bb5d
17 schema:citation sg:pub.10.1038/nature07638
18 sg:pub.10.1038/nbt0502-508
19 sg:pub.10.1038/nbt1236
20 sg:pub.10.1038/nbt1239
21 sg:pub.10.1038/nbt1296-1675
22 sg:pub.10.1038/nmeth.1223
23 sg:pub.10.1038/nmeth1153
24 sg:pub.10.1038/nmeth1157
25 sg:pub.10.1038/nrg2484
26 sg:pub.10.1186/1471-2164-10-264
27 https://app.dimensions.ai/details/publication/pub.1082415674
28 https://doi.org/10.1016/j.tig.2007.12.006
29 https://doi.org/10.1016/j.tig.2007.12.007
30 https://doi.org/10.1053/j.gastro.2008.09.042
31 https://doi.org/10.1126/science.1160342
32 https://doi.org/10.1126/science.270.5235.467
33 https://doi.org/10.1126/science.270.5235.484
34 https://doi.org/10.1126/science.8091218
35 https://doi.org/10.1146/annurev.genom.9.081307.164359
36 https://doi.org/10.1198/016214504000000683
37 schema:datePublished 2009-12
38 schema:datePublishedReg 2009-12-01
39 schema:description BACKGROUND: Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC). RESULTS: Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. CONCLUSION: 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N0385a3defc08430db05342c08cd7212c
44 N61b82ea23a2f48c283816206395da26e
45 sg:journal.1023790
46 schema:name 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer
47 schema:pagination 531
48 schema:productId N305653c2bfb84c1a8c0d08fdbf0b48bc
49 N6189c452721245d3bfefacf9d2014dd3
50 N703c64d0d95b430d9445a2f3a198b885
51 N85a1047baff14156af5d22f68a1a40fa
52 N87773ee7fb6a41de97c74ecdc529f9a5
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005207270
54 https://doi.org/10.1186/1471-2164-10-531
55 schema:sdDatePublished 2019-04-11T01:05
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N37dd79096d8046cd8735567dd844f072
58 schema:url http://link.springer.com/10.1186%2F1471-2164-10-531
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0172d22fcb36472aa2ba3cc03441bb5d rdf:first sg:person.01046622724.44
63 rdf:rest N6568ec2ce8ac4064b2c63cc5cb602250
64 N0385a3defc08430db05342c08cd7212c schema:volumeNumber 10
65 rdf:type schema:PublicationVolume
66 N06edc7cd5d1c44b6b933824b996da69f rdf:first sg:person.01226646442.82
67 rdf:rest N07458c3dd2214297a88a93fbb8c3b93b
68 N07458c3dd2214297a88a93fbb8c3b93b rdf:first sg:person.0765654161.14
69 rdf:rest Nbef4e8ae5df44efc81d85a165484b20a
70 N113b733093624fc999ae18f65a9bdf34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Sequence Analysis, DNA
72 rdf:type schema:DefinedTerm
73 N1243926226de4edcbad20cd9f997b5dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Reference Standards
75 rdf:type schema:DefinedTerm
76 N148423f0d9c443eb8f3a08abac69c48f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Gene Expression Profiling
78 rdf:type schema:DefinedTerm
79 N305653c2bfb84c1a8c0d08fdbf0b48bc schema:name readcube_id
80 schema:value 18cf18d2516ad2fc16f2e2514d63200203cb2a688254d4bc65e6d67c1a81af0a
81 rdf:type schema:PropertyValue
82 N347c7ab62ee340ab9ad027f1eeaaa80f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Time Factors
84 rdf:type schema:DefinedTerm
85 N37dd79096d8046cd8735567dd844f072 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N395c6d5452ec40cb8448c16cdac04d9b rdf:first sg:person.01317720502.22
88 rdf:rest Nc902a5c74eb44bbca39802a0593be9a8
89 N6189c452721245d3bfefacf9d2014dd3 schema:name doi
90 schema:value 10.1186/1471-2164-10-531
91 rdf:type schema:PropertyValue
92 N61b82ea23a2f48c283816206395da26e schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N6568ec2ce8ac4064b2c63cc5cb602250 rdf:first sg:person.0625260633.11
95 rdf:rest Ne16760087eeb47aca9f44538c8cd767b
96 N695116e3b95644f096b4470b1849d2bb rdf:first sg:person.0762537264.90
97 rdf:rest N395c6d5452ec40cb8448c16cdac04d9b
98 N703c64d0d95b430d9445a2f3a198b885 schema:name nlm_unique_id
99 schema:value 100965258
100 rdf:type schema:PropertyValue
101 N7356847d86ce4c0994dbeab55cf90c88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Polymerase Chain Reaction
103 rdf:type schema:DefinedTerm
104 N85a1047baff14156af5d22f68a1a40fa schema:name pubmed_id
105 schema:value 19917133
106 rdf:type schema:PropertyValue
107 N87773ee7fb6a41de97c74ecdc529f9a5 schema:name dimensions_id
108 schema:value pub.1005207270
109 rdf:type schema:PropertyValue
110 N8fe6a2c3d89c4f3798875733edaba58e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Oligonucleotide Array Sequence Analysis
112 rdf:type schema:DefinedTerm
113 Na4c52f21cdfb4d9d9d924c9e18afebb8 rdf:first sg:person.01237226701.10
114 rdf:rest N695116e3b95644f096b4470b1849d2bb
115 Na7c2e3978cd04060ae6b227ef82268be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Software
117 rdf:type schema:DefinedTerm
118 Nace03cbdebcd48eaaad401d7fb91d2b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genomics
120 rdf:type schema:DefinedTerm
121 Nadc9d7a509b9416791e037fd2c90a590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Reproducibility of Results
123 rdf:type schema:DefinedTerm
124 Nb15832b5da8f4a8285a460a75535d983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Brain
126 rdf:type schema:DefinedTerm
127 Nbef4e8ae5df44efc81d85a165484b20a rdf:first sg:person.01370515234.41
128 rdf:rest rdf:nil
129 Nc902a5c74eb44bbca39802a0593be9a8 rdf:first sg:person.01037512302.14
130 rdf:rest N06edc7cd5d1c44b6b933824b996da69f
131 Ne16760087eeb47aca9f44538c8cd767b rdf:first sg:person.012362237257.28
132 rdf:rest Ne839c4e8934441c186a0df0cf6d79d00
133 Ne839c4e8934441c186a0df0cf6d79d00 rdf:first sg:person.01151215137.12
134 rdf:rest Na4c52f21cdfb4d9d9d924c9e18afebb8
135 Ne8494ef10ce7499b83d81dec8f38cc72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Humans
137 rdf:type schema:DefinedTerm
138 Ned39190e8d8f44149a5226436fb3fb69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Genome, Human
140 rdf:type schema:DefinedTerm
141 Nf510b0a2bdde4d4586353b487cb6e6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name RNA
143 rdf:type schema:DefinedTerm
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
148 schema:name Genetics
149 rdf:type schema:DefinedTerm
150 sg:grant.2452552 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-531
151 rdf:type schema:MonetaryGrant
152 sg:grant.2455266 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-531
153 rdf:type schema:MonetaryGrant
154 sg:grant.2634009 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-531
155 rdf:type schema:MonetaryGrant
156 sg:grant.2705122 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-531
157 rdf:type schema:MonetaryGrant
158 sg:grant.5246518 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-531
159 rdf:type schema:MonetaryGrant
160 sg:journal.1023790 schema:issn 1471-2164
161 schema:name BMC Genomics
162 rdf:type schema:Periodical
163 sg:person.01037512302.14 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
164 schema:familyName Smith
165 schema:givenName David I
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037512302.14
167 rdf:type schema:Person
168 sg:person.01046622724.44 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
169 schema:familyName Asmann
170 schema:givenName Yan W
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046622724.44
172 rdf:type schema:Person
173 sg:person.01151215137.12 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
174 schema:familyName Perez
175 schema:givenName Edith A
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151215137.12
177 rdf:type schema:Person
178 sg:person.01226646442.82 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
179 schema:familyName Poland
180 schema:givenName Gregory A
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226646442.82
182 rdf:type schema:Person
183 sg:person.012362237257.28 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
184 schema:familyName Thompson
185 schema:givenName E Aubrey
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362237257.28
187 rdf:type schema:Person
188 sg:person.01237226701.10 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
189 schema:familyName Middha
190 schema:givenName Sumit
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237226701.10
192 rdf:type schema:Person
193 sg:person.01317720502.22 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
194 schema:familyName Therneau
195 schema:givenName Terry M
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317720502.22
197 rdf:type schema:Person
198 sg:person.01370515234.41 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
199 schema:familyName Kocher
200 schema:givenName Jean-Pierre A
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370515234.41
202 rdf:type schema:Person
203 sg:person.0625260633.11 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
204 schema:familyName Klee
205 schema:givenName Eric W
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625260633.11
207 rdf:type schema:Person
208 sg:person.0762537264.90 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
209 schema:familyName Oberg
210 schema:givenName Ann L
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762537264.90
212 rdf:type schema:Person
213 sg:person.0765654161.14 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
214 schema:familyName Wieben
215 schema:givenName Eric D
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765654161.14
217 rdf:type schema:Person
218 sg:pub.10.1038/nature07638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009442631
219 https://doi.org/10.1038/nature07638
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nbt0502-508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016616140
222 https://doi.org/10.1038/nbt0502-508
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nbt1236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037539567
225 https://doi.org/10.1038/nbt1236
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nbt1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875102
228 https://doi.org/10.1038/nbt1239
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
231 https://doi.org/10.1038/nbt1296-1675
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nmeth.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586936
234 https://doi.org/10.1038/nmeth.1223
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nmeth1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003944263
237 https://doi.org/10.1038/nmeth1153
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nmeth1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048416659
240 https://doi.org/10.1038/nmeth1157
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
243 https://doi.org/10.1038/nrg2484
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1471-2164-10-264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051832806
246 https://doi.org/10.1186/1471-2164-10-264
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1082415674 schema:CreativeWork
249 https://doi.org/10.1016/j.tig.2007.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002151237
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1053/j.gastro.2008.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012228136
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1126/science.1160342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042163407
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1126/science.8091218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652223
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1146/annurev.genom.9.081307.164359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015853776
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1198/016214504000000683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198205
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.417467.7 schema:alternateName Mayo Clinic
268 schema:name Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 32224, Jacksonville, FL, USA
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
271 schema:name Advanced Genomics Technology Center DNA sequencing lab, Mayo Clinic College of Medicine, Mayo Clinic, 55905, Rochester, MN, USA
272 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA
273 Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA
274 Mayo Vaccine Research Group, the Program in Translational Immunovirology and Biodefense, Department of Medicine, Mayo Clinic, 55905, Rochester, MN, USA
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...