Pepsin homologues in bacteria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Neil D Rawlings, Alex Bateman

ABSTRACT

BACKGROUND: Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. RESULTS: Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. CONCLUSION: The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies. More... »

PAGES

437

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-10-437

DOI

http://dx.doi.org/10.1186/1471-2164-10-437

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002711396

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19758436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pepsin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rawlings", 
        "givenName": "Neil D", 
        "id": "sg:person.01252421406.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252421406.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bateman", 
        "givenName": "Alex", 
        "id": "sg:person.01253551753.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0014-5793(97)00547-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002031779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342299a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005287322", 
          "https://doi.org/10.1038/342299a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nurt.2008.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010986901", 
          "https://doi.org/10.1016/j.nurt.2008.05.007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.9.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013681655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2006.08.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014004307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.61.080706.093257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014730657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015047250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2900205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015208375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2900205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015208375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019401738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(88)80672-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021521863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025418152", 
          "https://doi.org/10.1186/1745-6150-4-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pci002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025948075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m404212200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027291785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-6012-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030780050", 
          "https://doi.org/10.1007/978-1-4684-6012-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035298486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402439", 
          "https://doi.org/10.1038/nprot.2007.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.187.20.7119-7125.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038232545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/20.18.5033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040038191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413794", 
          "https://doi.org/10.1186/1471-2105-5-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(90)90156-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(90)90156-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/9.10.869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041221731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2007.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043274408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/271618a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043520412", 
          "https://doi.org/10.1038/271618a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20031575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044600574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20031575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044600574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504766102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045910226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504766102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045910226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046425410", 
          "https://doi.org/10.1007/pl00006562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m708962200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046640447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047239624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701477825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-46-4-972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060349438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-52-6-2211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060350975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-129-10-3057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060364656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.27058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077441930", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family.\nRESULTS: Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome.\nCONCLUSION: The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-10-437", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3638942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Pepsin homologues in bacteria", 
    "pagination": "437", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ce8d168e1fc40622ffd8395856b433900c71f655f650a4b558890afe0533b0b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19758436"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-10-437"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002711396"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-10-437", 
      "https://app.dimensions.ai/details/publication/pub.1002711396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-10-437"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      75 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-10-437 schema:about N02d6698a9d3c49eca173dd3b8131e21d
2 N18d46a2697564ae8a1666990244146fb
3 N2201e10b84484aa898cab40c841d7f0c
4 N743856f3f71b463c96fb4614f1de97b4
5 N793d50e6e3644144ad52aedde6e77638
6 N940cd828cbcc42de8d9bbfaeefee75a3
7 Nbf751a1872664d2caf29523945a16f13
8 Nc3d4e454358644be8465412cfeff20dd
9 Nc7ed3dab0f994aca8383c4bdec96912a
10 Nefc4331224784b59acaca42c09f0779a
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nae4b7ba37ea34486bb2c2183e4273e6c
14 schema:citation sg:pub.10.1007/978-1-4684-6012-4_2
15 sg:pub.10.1007/pl00006562
16 sg:pub.10.1016/j.nurt.2008.05.007
17 sg:pub.10.1038/271618a0
18 sg:pub.10.1038/342299a0
19 sg:pub.10.1038/nprot.2007.131
20 sg:pub.10.1186/1471-2105-5-113
21 sg:pub.10.1186/1745-6150-4-3
22 https://app.dimensions.ai/details/publication/pub.1077441930
23 https://doi.org/10.1016/0014-5793(88)80672-0
24 https://doi.org/10.1016/0022-2836(90)90156-g
25 https://doi.org/10.1016/j.biochi.2007.09.014
26 https://doi.org/10.1016/j.biortech.2007.05.001
27 https://doi.org/10.1016/j.jmb.2006.08.086
28 https://doi.org/10.1016/s0014-5793(97)00547-4
29 https://doi.org/10.1042/bj20031575
30 https://doi.org/10.1042/bj2900205
31 https://doi.org/10.1073/pnas.0504766102
32 https://doi.org/10.1074/jbc.m404212200
33 https://doi.org/10.1074/jbc.m708962200
34 https://doi.org/10.1080/10635150701477825
35 https://doi.org/10.1093/bioinformatics/17.9.845
36 https://doi.org/10.1093/bioinformatics/btl369
37 https://doi.org/10.1093/emboj/20.18.5033
38 https://doi.org/10.1093/molbev/msg217
39 https://doi.org/10.1093/nar/25.17.3389
40 https://doi.org/10.1093/nar/gkm1000
41 https://doi.org/10.1093/nar/gkm954
42 https://doi.org/10.1093/pcp/pci002
43 https://doi.org/10.1093/protein/9.10.869
44 https://doi.org/10.1099/00207713-46-4-972
45 https://doi.org/10.1099/00207713-52-6-2211
46 https://doi.org/10.1099/00221287-129-10-3057
47 https://doi.org/10.1099/mic.0.27058-0
48 https://doi.org/10.1128/jb.187.20.7119-7125.2005
49 https://doi.org/10.1146/annurev.micro.61.080706.093257
50 schema:datePublished 2009-12
51 schema:datePublishedReg 2009-12-01
52 schema:description BACKGROUND: Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. RESULTS: Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. CONCLUSION: The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N10f54e8108f94dcb8f14f92470ea30a7
57 N3b83ee074f5d4c1181109ab80f432471
58 sg:journal.1023790
59 schema:name Pepsin homologues in bacteria
60 schema:pagination 437
61 schema:productId N00125d3413ab41d5b93a307a86c23ebe
62 N15713ecbe4594100a3a26942856bc991
63 N41f506d4d3624c37a2461039aed3a17e
64 N4ec66d6f1e3e4728a6887833dbd8d7da
65 N83dc6197d93e4dc987cdb6d1e9200434
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002711396
67 https://doi.org/10.1186/1471-2164-10-437
68 schema:sdDatePublished 2019-04-10T17:29
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nac321595d41e41c0b7a58355dfc34324
71 schema:url http://link.springer.com/10.1186%2F1471-2164-10-437
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N00125d3413ab41d5b93a307a86c23ebe schema:name nlm_unique_id
76 schema:value 100965258
77 rdf:type schema:PropertyValue
78 N02d6698a9d3c49eca173dd3b8131e21d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Amino Acid Sequence
80 rdf:type schema:DefinedTerm
81 N107520b841b4480bb5968611d1d44c5c rdf:first sg:person.01253551753.58
82 rdf:rest rdf:nil
83 N10f54e8108f94dcb8f14f92470ea30a7 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N15713ecbe4594100a3a26942856bc991 schema:name doi
86 schema:value 10.1186/1471-2164-10-437
87 rdf:type schema:PropertyValue
88 N18d46a2697564ae8a1666990244146fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Genome, Bacterial
90 rdf:type schema:DefinedTerm
91 N2201e10b84484aa898cab40c841d7f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Evolution, Molecular
93 rdf:type schema:DefinedTerm
94 N3b83ee074f5d4c1181109ab80f432471 schema:volumeNumber 10
95 rdf:type schema:PublicationVolume
96 N41f506d4d3624c37a2461039aed3a17e schema:name dimensions_id
97 schema:value pub.1002711396
98 rdf:type schema:PropertyValue
99 N4ec66d6f1e3e4728a6887833dbd8d7da schema:name readcube_id
100 schema:value 0ce8d168e1fc40622ffd8395856b433900c71f655f650a4b558890afe0533b0b
101 rdf:type schema:PropertyValue
102 N743856f3f71b463c96fb4614f1de97b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Bacterial Proteins
104 rdf:type schema:DefinedTerm
105 N793d50e6e3644144ad52aedde6e77638 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Molecular Sequence Data
107 rdf:type schema:DefinedTerm
108 N83dc6197d93e4dc987cdb6d1e9200434 schema:name pubmed_id
109 schema:value 19758436
110 rdf:type schema:PropertyValue
111 N940cd828cbcc42de8d9bbfaeefee75a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Proteobacteria
113 rdf:type schema:DefinedTerm
114 Nac321595d41e41c0b7a58355dfc34324 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nae4b7ba37ea34486bb2c2183e4273e6c rdf:first sg:person.01252421406.50
117 rdf:rest N107520b841b4480bb5968611d1d44c5c
118 Nbf751a1872664d2caf29523945a16f13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Pepsin A
120 rdf:type schema:DefinedTerm
121 Nc3d4e454358644be8465412cfeff20dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 Nc7ed3dab0f994aca8383c4bdec96912a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Phylogeny
126 rdf:type schema:DefinedTerm
127 Nefc4331224784b59acaca42c09f0779a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Sequence Alignment
129 rdf:type schema:DefinedTerm
130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biological Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
134 schema:name Genetics
135 rdf:type schema:DefinedTerm
136 sg:grant.3638942 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-437
137 rdf:type schema:MonetaryGrant
138 sg:journal.1023790 schema:issn 1471-2164
139 schema:name BMC Genomics
140 rdf:type schema:Periodical
141 sg:person.01252421406.50 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
142 schema:familyName Rawlings
143 schema:givenName Neil D
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252421406.50
145 rdf:type schema:Person
146 sg:person.01253551753.58 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
147 schema:familyName Bateman
148 schema:givenName Alex
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58
150 rdf:type schema:Person
151 sg:pub.10.1007/978-1-4684-6012-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030780050
152 https://doi.org/10.1007/978-1-4684-6012-4_2
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/pl00006562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046425410
155 https://doi.org/10.1007/pl00006562
156 rdf:type schema:CreativeWork
157 sg:pub.10.1016/j.nurt.2008.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010986901
158 https://doi.org/10.1016/j.nurt.2008.05.007
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/271618a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043520412
161 https://doi.org/10.1038/271618a0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/342299a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005287322
164 https://doi.org/10.1038/342299a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nprot.2007.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402439
167 https://doi.org/10.1038/nprot.2007.131
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-5-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413794
170 https://doi.org/10.1186/1471-2105-5-113
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1745-6150-4-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025418152
173 https://doi.org/10.1186/1745-6150-4-3
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1077441930 schema:CreativeWork
176 https://doi.org/10.1016/0014-5793(88)80672-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215604
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0022-2836(90)90156-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154716
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.biochi.2007.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043274408
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.biortech.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401738
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jmb.2006.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014004307
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0014-5793(97)00547-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002031779
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1042/bj20031575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044600574
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1042/bj2900205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015208375
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.0504766102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045910226
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1074/jbc.m404212200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027291785
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1074/jbc.m708962200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046640447
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/10635150701477825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369708
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/17.9.845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013681655
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btl369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021521863
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/emboj/20.18.5033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040038191
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/molbev/msg217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047239624
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gkm1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015047250
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkm954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035298486
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/pcp/pci002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025948075
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/protein/9.10.869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041221731
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1099/00207713-46-4-972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060349438
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1099/00207713-52-6-2211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060350975
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1099/00221287-129-10-3057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060364656
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1099/mic.0.27058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397060
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1128/jb.187.20.7119-7125.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038232545
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1146/annurev.micro.61.080706.093257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014730657
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
231 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...