Pepsin homologues in bacteria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Neil D Rawlings, Alex Bateman

ABSTRACT

BACKGROUND: Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. RESULTS: Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. CONCLUSION: The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies. More... »

PAGES

437

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-10-437

DOI

http://dx.doi.org/10.1186/1471-2164-10-437

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002711396

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19758436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pepsin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rawlings", 
        "givenName": "Neil D", 
        "id": "sg:person.01252421406.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252421406.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bateman", 
        "givenName": "Alex", 
        "id": "sg:person.01253551753.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0014-5793(97)00547-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002031779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342299a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005287322", 
          "https://doi.org/10.1038/342299a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nurt.2008.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010986901", 
          "https://doi.org/10.1016/j.nurt.2008.05.007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.9.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013681655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2006.08.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014004307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.61.080706.093257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014730657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015047250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2900205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015208375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2900205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015208375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019401738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(88)80672-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021521863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025418152", 
          "https://doi.org/10.1186/1745-6150-4-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pci002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025948075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m404212200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027291785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-6012-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030780050", 
          "https://doi.org/10.1007/978-1-4684-6012-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035298486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402439", 
          "https://doi.org/10.1038/nprot.2007.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.187.20.7119-7125.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038232545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/20.18.5033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040038191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413794", 
          "https://doi.org/10.1186/1471-2105-5-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(90)90156-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(90)90156-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/9.10.869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041221731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2007.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043274408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/271618a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043520412", 
          "https://doi.org/10.1038/271618a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20031575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044600574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20031575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044600574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504766102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045910226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504766102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045910226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046425410", 
          "https://doi.org/10.1007/pl00006562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m708962200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046640447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047239624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701477825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-46-4-972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060349438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-52-6-2211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060350975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-129-10-3057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060364656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.27058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077441930", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family.\nRESULTS: Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome.\nCONCLUSION: The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-10-437", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3638942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Pepsin homologues in bacteria", 
    "pagination": "437", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ce8d168e1fc40622ffd8395856b433900c71f655f650a4b558890afe0533b0b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19758436"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-10-437"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002711396"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-10-437", 
      "https://app.dimensions.ai/details/publication/pub.1002711396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-10-437"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-437'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      75 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-10-437 schema:about N46312f58ef584b18b7e9482331bc714f
2 N65904375421d4961bce251aa1bf1f384
3 N6f0aa70db6cb4db095be0bef1c41d629
4 N93ecc76c90be47aa8bfe057eaac0b612
5 Nb3566e05113246b2ba7127c531bda3e9
6 Nbcfd37277e744bbe89ea67865cb97636
7 Nc64afa7601024be1bbd399363b16e3a2
8 Nd90c13fdd6d34493871e0209a82c8ba4
9 Ne14f9b65cfc44a30be0a96cabcd1b6d5
10 Nf390928e66d440e5a5a96d734352139d
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nddc7200a5f3a4cacb0a805dedc5e8935
14 schema:citation sg:pub.10.1007/978-1-4684-6012-4_2
15 sg:pub.10.1007/pl00006562
16 sg:pub.10.1016/j.nurt.2008.05.007
17 sg:pub.10.1038/271618a0
18 sg:pub.10.1038/342299a0
19 sg:pub.10.1038/nprot.2007.131
20 sg:pub.10.1186/1471-2105-5-113
21 sg:pub.10.1186/1745-6150-4-3
22 https://app.dimensions.ai/details/publication/pub.1077441930
23 https://doi.org/10.1016/0014-5793(88)80672-0
24 https://doi.org/10.1016/0022-2836(90)90156-g
25 https://doi.org/10.1016/j.biochi.2007.09.014
26 https://doi.org/10.1016/j.biortech.2007.05.001
27 https://doi.org/10.1016/j.jmb.2006.08.086
28 https://doi.org/10.1016/s0014-5793(97)00547-4
29 https://doi.org/10.1042/bj20031575
30 https://doi.org/10.1042/bj2900205
31 https://doi.org/10.1073/pnas.0504766102
32 https://doi.org/10.1074/jbc.m404212200
33 https://doi.org/10.1074/jbc.m708962200
34 https://doi.org/10.1080/10635150701477825
35 https://doi.org/10.1093/bioinformatics/17.9.845
36 https://doi.org/10.1093/bioinformatics/btl369
37 https://doi.org/10.1093/emboj/20.18.5033
38 https://doi.org/10.1093/molbev/msg217
39 https://doi.org/10.1093/nar/25.17.3389
40 https://doi.org/10.1093/nar/gkm1000
41 https://doi.org/10.1093/nar/gkm954
42 https://doi.org/10.1093/pcp/pci002
43 https://doi.org/10.1093/protein/9.10.869
44 https://doi.org/10.1099/00207713-46-4-972
45 https://doi.org/10.1099/00207713-52-6-2211
46 https://doi.org/10.1099/00221287-129-10-3057
47 https://doi.org/10.1099/mic.0.27058-0
48 https://doi.org/10.1128/jb.187.20.7119-7125.2005
49 https://doi.org/10.1146/annurev.micro.61.080706.093257
50 schema:datePublished 2009-12
51 schema:datePublishedReg 2009-12-01
52 schema:description BACKGROUND: Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. RESULTS: Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. CONCLUSION: The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N1eb1d0d0b0734cbfbd0bba002713a3f8
57 Nfa2f4d93887e47caa628f8e782ea150c
58 sg:journal.1023790
59 schema:name Pepsin homologues in bacteria
60 schema:pagination 437
61 schema:productId N071d5dc9336c44cca67c2c4d27e33d0c
62 N7faee0cf1ff1420f868b31f68303d40b
63 N83df84e66bbe4589a9b0059e068cc1c0
64 Nb00c4267fb364c6c8340843124493f61
65 Nf3316f0ca7f24711bdc4ceb26ba1aa57
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002711396
67 https://doi.org/10.1186/1471-2164-10-437
68 schema:sdDatePublished 2019-04-10T17:29
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nc81013045d3344858588eecc7638ae4a
71 schema:url http://link.springer.com/10.1186%2F1471-2164-10-437
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N071d5dc9336c44cca67c2c4d27e33d0c schema:name doi
76 schema:value 10.1186/1471-2164-10-437
77 rdf:type schema:PropertyValue
78 N1eb1d0d0b0734cbfbd0bba002713a3f8 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N46312f58ef584b18b7e9482331bc714f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Amino Acid Sequence
82 rdf:type schema:DefinedTerm
83 N65904375421d4961bce251aa1bf1f384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Phylogeny
85 rdf:type schema:DefinedTerm
86 N6f0aa70db6cb4db095be0bef1c41d629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Molecular Sequence Data
88 rdf:type schema:DefinedTerm
89 N7faee0cf1ff1420f868b31f68303d40b schema:name nlm_unique_id
90 schema:value 100965258
91 rdf:type schema:PropertyValue
92 N83df84e66bbe4589a9b0059e068cc1c0 schema:name pubmed_id
93 schema:value 19758436
94 rdf:type schema:PropertyValue
95 N93ecc76c90be47aa8bfe057eaac0b612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Genome, Bacterial
97 rdf:type schema:DefinedTerm
98 Nb00c4267fb364c6c8340843124493f61 schema:name readcube_id
99 schema:value 0ce8d168e1fc40622ffd8395856b433900c71f655f650a4b558890afe0533b0b
100 rdf:type schema:PropertyValue
101 Nb3566e05113246b2ba7127c531bda3e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Proteobacteria
103 rdf:type schema:DefinedTerm
104 Nbcfd37277e744bbe89ea67865cb97636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Sequence Alignment
106 rdf:type schema:DefinedTerm
107 Nc09833f533c941eea79b6db20fcdd9d2 rdf:first sg:person.01253551753.58
108 rdf:rest rdf:nil
109 Nc64afa7601024be1bbd399363b16e3a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Evolution, Molecular
111 rdf:type schema:DefinedTerm
112 Nc81013045d3344858588eecc7638ae4a schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nd90c13fdd6d34493871e0209a82c8ba4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Pepsin A
116 rdf:type schema:DefinedTerm
117 Nddc7200a5f3a4cacb0a805dedc5e8935 rdf:first sg:person.01252421406.50
118 rdf:rest Nc09833f533c941eea79b6db20fcdd9d2
119 Ne14f9b65cfc44a30be0a96cabcd1b6d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 Nf3316f0ca7f24711bdc4ceb26ba1aa57 schema:name dimensions_id
123 schema:value pub.1002711396
124 rdf:type schema:PropertyValue
125 Nf390928e66d440e5a5a96d734352139d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Bacterial Proteins
127 rdf:type schema:DefinedTerm
128 Nfa2f4d93887e47caa628f8e782ea150c schema:volumeNumber 10
129 rdf:type schema:PublicationVolume
130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biological Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
134 schema:name Genetics
135 rdf:type schema:DefinedTerm
136 sg:grant.3638942 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2164-10-437
137 rdf:type schema:MonetaryGrant
138 sg:journal.1023790 schema:issn 1471-2164
139 schema:name BMC Genomics
140 rdf:type schema:Periodical
141 sg:person.01252421406.50 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
142 schema:familyName Rawlings
143 schema:givenName Neil D
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252421406.50
145 rdf:type schema:Person
146 sg:person.01253551753.58 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
147 schema:familyName Bateman
148 schema:givenName Alex
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58
150 rdf:type schema:Person
151 sg:pub.10.1007/978-1-4684-6012-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030780050
152 https://doi.org/10.1007/978-1-4684-6012-4_2
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/pl00006562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046425410
155 https://doi.org/10.1007/pl00006562
156 rdf:type schema:CreativeWork
157 sg:pub.10.1016/j.nurt.2008.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010986901
158 https://doi.org/10.1016/j.nurt.2008.05.007
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/271618a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043520412
161 https://doi.org/10.1038/271618a0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/342299a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005287322
164 https://doi.org/10.1038/342299a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nprot.2007.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402439
167 https://doi.org/10.1038/nprot.2007.131
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-5-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413794
170 https://doi.org/10.1186/1471-2105-5-113
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1745-6150-4-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025418152
173 https://doi.org/10.1186/1745-6150-4-3
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1077441930 schema:CreativeWork
176 https://doi.org/10.1016/0014-5793(88)80672-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215604
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0022-2836(90)90156-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154716
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.biochi.2007.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043274408
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.biortech.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401738
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jmb.2006.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014004307
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0014-5793(97)00547-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002031779
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1042/bj20031575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044600574
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1042/bj2900205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015208375
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.0504766102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045910226
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1074/jbc.m404212200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027291785
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1074/jbc.m708962200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046640447
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/10635150701477825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369708
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/17.9.845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013681655
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btl369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021521863
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/emboj/20.18.5033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040038191
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/molbev/msg217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047239624
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gkm1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015047250
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkm954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035298486
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/pcp/pci002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025948075
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/protein/9.10.869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041221731
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1099/00207713-46-4-972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060349438
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1099/00207713-52-6-2211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060350975
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1099/00221287-129-10-3057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060364656
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1099/mic.0.27058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397060
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1128/jb.187.20.7119-7125.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038232545
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1146/annurev.micro.61.080706.093257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014730657
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
231 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...