Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-07-06

AUTHORS

Elzbieta Krzywinska, Jaroslaw Krzywinski

ABSTRACT

BackgroundMale mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae.ResultsUsing a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex.ConclusionDiscovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms. More... »

PAGES

300

References to SciGraph publications

  • 2005-02-10. Arthropod-borne diseases: vector control in the genomics era in NATURE REVIEWS MICROBIOLOGY
  • 2005-10-09. An Anopheles transgenic sexing strain for vector control in NATURE BIOTECHNOLOGY
  • 2004-04-07. Expression of the telomeric retrotransposon HeT-A in Drosophila melanogaster is correlated with cell proliferation in DEVELOPMENT GENES AND EVOLUTION
  • 2006-07-27. A reliable morphological method to assess the age of male Anopheles gambiae in MALARIA JOURNAL
  • 1997-02. The solution structure of a specific GAGA factor–DNA complex reveals a modular binding mode in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2004-12-01. AKAP signalling complexes: focal points in space and time in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2005-02. Gene expression in spermiogenesis in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2001-05. Packaging paternal chromosomes with protamine in NATURE GENETICS
  • 2006-05-09. Gene drive systems for insect disease vectors in NATURE REVIEWS GENETICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 1989-10. Too many leucine zippers? in NATURE
  • 1997. Care and maintenance of Aedes mosquito colonies in THE MOLECULAR BIOLOGY OF INSECT DISEASE VECTORS
  • 2004-11-30. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses in NATURE MEDICINE
  • 2001-04. Three classes of C2H2 zinc finger proteins in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 1997. Care and maintenance of anopheline mosquito colonies in THE MOLECULAR BIOLOGY OF INSECT DISEASE VECTORS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2164-10-300

    DOI

    http://dx.doi.org/10.1186/1471-2164-10-300

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031295378

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19580678


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anopheles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Comparative Genomic Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Developmental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spermatogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Testis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biology, University of Texas at Arlington, 76019, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.267315.4", 
              "name": [
                "Department of Biology, University of Texas at Arlington, 76019, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krzywinska", 
            "givenName": "Elzbieta", 
            "id": "sg:person.01337427426.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337427426.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Liverpool School of Tropical Medicine, Vector Group, L3 5QA, Liverpool, UK", 
              "id": "http://www.grid.ac/institutes/grid.48004.38", 
              "name": [
                "Department of Biology, University of Texas at Arlington, 76019, Texas, USA", 
                "Liverpool School of Tropical Medicine, Vector Group, L3 5QA, Liverpool, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krzywinski", 
            "givenName": "Jaroslaw", 
            "id": "sg:person.01367635300.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367635300.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature06341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040143850", 
              "https://doi.org/10.1038/nature06341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031741350", 
              "https://doi.org/10.1038/nm1144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011866739", 
              "https://doi.org/10.1038/nrm1527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006635141", 
              "https://doi.org/10.1038/nbt1152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0297-122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020229316", 
              "https://doi.org/10.1038/nsb0297-122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341574a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016810797", 
              "https://doi.org/10.1038/341574a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049172480", 
              "https://doi.org/10.1038/nrmicro1101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-004-4394-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031203518", 
              "https://doi.org/10.1007/s00018-004-4394-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-1535-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026047326", 
              "https://doi.org/10.1007/978-94-009-1535-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-5-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005994713", 
              "https://doi.org/10.1186/1475-2875-5-62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0501-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023274677", 
              "https://doi.org/10.1038/ng0501-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005461495", 
              "https://doi.org/10.1038/nrg1870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00427-004-0400-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035261768", 
              "https://doi.org/10.1007/s00427-004-0400-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-1535-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023907012", 
              "https://doi.org/10.1007/978-94-009-1535-0_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00000885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045184308", 
              "https://doi.org/10.1007/pl00000885"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-07-06", 
        "datePublishedReg": "2009-07-06", 
        "description": "BackgroundMale mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae.ResultsUsing a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex.ConclusionDiscovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2164-10-300", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "male-biased transcription", 
          "lineage-specific genes", 
          "cDNA subtraction strategy", 
          "temporal expression patterns", 
          "non-target organisms", 
          "analysis of expression", 
          "orphan genes", 
          "clear homologs", 
          "expression analysis", 
          "developmental processes", 
          "Anopheles gambiae", 
          "expression patterns", 
          "unknown function", 
          "sperm maturation", 
          "reproductive tissues", 
          "genes", 
          "male Anopheles", 
          "situ hybridization", 
          "unique target", 
          "taxa", 
          "mid-late stage", 
          "organisms", 
          "mosquitoes", 
          "sequence", 
          "orthologs", 
          "homolog", 
          "transcription", 
          "gambiae", 
          "control mechanisms", 
          "innovative control method", 
          "RNA", 
          "biology", 
          "subtraction strategy", 
          "pupae", 
          "protein", 
          "Anopheles", 
          "Culex", 
          "poor understanding", 
          "spermatids", 
          "orphans", 
          "hybridization", 
          "humans", 
          "spermatogenesis", 
          "pathogens", 
          "Aedes", 
          "maturation", 
          "expression", 
          "new prospects", 
          "testis", 
          "wide range", 
          "target", 
          "tissue", 
          "An", 
          "insights", 
          "mechanism", 
          "function", 
          "patterns", 
          "analysis", 
          "understanding", 
          "stage", 
          "males", 
          "involvement", 
          "development", 
          "majority", 
          "agents", 
          "process", 
          "strategies", 
          "range", 
          "majority of cases", 
          "prospects", 
          "blood", 
          "match", 
          "research", 
          "delivery", 
          "subject of research", 
          "control method", 
          "method", 
          "cases", 
          "subjects"
        ], 
        "name": "Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes", 
        "pagination": "300", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031295378"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2164-10-300"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19580678"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2164-10-300", 
          "https://app.dimensions.ai/details/publication/pub.1031295378"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2164-10-300"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-300'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-300'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-300'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-300'


     

    This table displays all metadata directly associated to this object as RDF triples.

    270 TRIPLES      21 PREDICATES      134 URIs      111 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2164-10-300 schema:about N104035f8f99347e6b5a6925cd2fcf68a
    2 N105fcc54e639485fbf7b11a6895cb4d3
    3 N2af92f2a79b94df49a7cdebe14e146c3
    4 N675ccefb17f3404ca3fa026a9d37d068
    5 N6b0e835a86604ff49c2142e67226fb83
    6 N80d49f9b1827469e95f49eaa070ce723
    7 N858148ba191c422683c40a285a414745
    8 N8d1653b838f64681ac2de52ce1788e44
    9 N912492b300974f02a439fcd11ff0a668
    10 N9bf0d7809a0f4cbe8d25740340e8a84a
    11 N9ee202b96ca94470b8b38da55f84f213
    12 Nba6b570c5fd54126af0b1ef0b44c9377
    13 Ndce64a5ae4c04f44a4a2f2503ed4dd3c
    14 Ne08783697449435eb0c9f7a528ace742
    15 Nf0b7c85f0b584949a3a348e1226d4fb0
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author N480f5d1c97ed413496c77da3b02c9794
    19 schema:citation sg:pub.10.1007/978-94-009-1535-0_1
    20 sg:pub.10.1007/978-94-009-1535-0_2
    21 sg:pub.10.1007/pl00000885
    22 sg:pub.10.1007/s00018-004-4394-y
    23 sg:pub.10.1007/s00427-004-0400-x
    24 sg:pub.10.1038/341574a0
    25 sg:pub.10.1038/nature06341
    26 sg:pub.10.1038/nbt1152
    27 sg:pub.10.1038/ng0501-10
    28 sg:pub.10.1038/nm1144
    29 sg:pub.10.1038/nrg1870
    30 sg:pub.10.1038/nrm1527
    31 sg:pub.10.1038/nrmicro1101
    32 sg:pub.10.1038/nsb0297-122
    33 sg:pub.10.1186/1475-2875-5-62
    34 schema:datePublished 2009-07-06
    35 schema:datePublishedReg 2009-07-06
    36 schema:description BackgroundMale mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae.ResultsUsing a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex.ConclusionDiscovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf Nc9c3f30688c44049924011162a078934
    40 Nd45172c7aeac4dcda8275e13999d8512
    41 sg:journal.1023790
    42 schema:keywords Aedes
    43 An
    44 Anopheles
    45 Anopheles gambiae
    46 Culex
    47 RNA
    48 agents
    49 analysis
    50 analysis of expression
    51 biology
    52 blood
    53 cDNA subtraction strategy
    54 cases
    55 clear homologs
    56 control mechanisms
    57 control method
    58 delivery
    59 development
    60 developmental processes
    61 expression
    62 expression analysis
    63 expression patterns
    64 function
    65 gambiae
    66 genes
    67 homolog
    68 humans
    69 hybridization
    70 innovative control method
    71 insights
    72 involvement
    73 lineage-specific genes
    74 majority
    75 majority of cases
    76 male Anopheles
    77 male-biased transcription
    78 males
    79 match
    80 maturation
    81 mechanism
    82 method
    83 mid-late stage
    84 mosquitoes
    85 new prospects
    86 non-target organisms
    87 organisms
    88 orphan genes
    89 orphans
    90 orthologs
    91 pathogens
    92 patterns
    93 poor understanding
    94 process
    95 prospects
    96 protein
    97 pupae
    98 range
    99 reproductive tissues
    100 research
    101 sequence
    102 situ hybridization
    103 sperm maturation
    104 spermatids
    105 spermatogenesis
    106 stage
    107 strategies
    108 subject of research
    109 subjects
    110 subtraction strategy
    111 target
    112 taxa
    113 temporal expression patterns
    114 testis
    115 tissue
    116 transcription
    117 understanding
    118 unique target
    119 unknown function
    120 wide range
    121 schema:name Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes
    122 schema:pagination 300
    123 schema:productId N21aab0c92e1c4db5b1b04beda62ff6e4
    124 N4d687293c44346f384089652d283e278
    125 Nd8f2de75261c48db8286e045315cecb5
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031295378
    127 https://doi.org/10.1186/1471-2164-10-300
    128 schema:sdDatePublished 2022-11-24T20:53
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher N9d3bd1128cd740449beb3230f443ff01
    131 schema:url https://doi.org/10.1186/1471-2164-10-300
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N104035f8f99347e6b5a6925cd2fcf68a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Anopheles
    137 rdf:type schema:DefinedTerm
    138 N105fcc54e639485fbf7b11a6895cb4d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Animals
    140 rdf:type schema:DefinedTerm
    141 N21aab0c92e1c4db5b1b04beda62ff6e4 schema:name dimensions_id
    142 schema:value pub.1031295378
    143 rdf:type schema:PropertyValue
    144 N2af92f2a79b94df49a7cdebe14e146c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Testis
    146 rdf:type schema:DefinedTerm
    147 N480f5d1c97ed413496c77da3b02c9794 rdf:first sg:person.01337427426.47
    148 rdf:rest Nc8de093a277748efb35bb22da295d22d
    149 N4d687293c44346f384089652d283e278 schema:name pubmed_id
    150 schema:value 19580678
    151 rdf:type schema:PropertyValue
    152 N675ccefb17f3404ca3fa026a9d37d068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Sequence Alignment
    154 rdf:type schema:DefinedTerm
    155 N6b0e835a86604ff49c2142e67226fb83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Comparative Genomic Hybridization
    157 rdf:type schema:DefinedTerm
    158 N80d49f9b1827469e95f49eaa070ce723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Spermatogenesis
    160 rdf:type schema:DefinedTerm
    161 N858148ba191c422683c40a285a414745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name DNA, Complementary
    163 rdf:type schema:DefinedTerm
    164 N8d1653b838f64681ac2de52ce1788e44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Gene Expression Profiling
    166 rdf:type schema:DefinedTerm
    167 N912492b300974f02a439fcd11ff0a668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Genes, Insect
    169 rdf:type schema:DefinedTerm
    170 N9bf0d7809a0f4cbe8d25740340e8a84a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Amino Acid Sequence
    172 rdf:type schema:DefinedTerm
    173 N9d3bd1128cd740449beb3230f443ff01 schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 N9ee202b96ca94470b8b38da55f84f213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Molecular Sequence Data
    177 rdf:type schema:DefinedTerm
    178 Nba6b570c5fd54126af0b1ef0b44c9377 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Sequence Analysis, DNA
    180 rdf:type schema:DefinedTerm
    181 Nc8de093a277748efb35bb22da295d22d rdf:first sg:person.01367635300.38
    182 rdf:rest rdf:nil
    183 Nc9c3f30688c44049924011162a078934 schema:volumeNumber 10
    184 rdf:type schema:PublicationVolume
    185 Nd45172c7aeac4dcda8275e13999d8512 schema:issueNumber 1
    186 rdf:type schema:PublicationIssue
    187 Nd8f2de75261c48db8286e045315cecb5 schema:name doi
    188 schema:value 10.1186/1471-2164-10-300
    189 rdf:type schema:PropertyValue
    190 Ndce64a5ae4c04f44a4a2f2503ed4dd3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Gene Expression Regulation, Developmental
    192 rdf:type schema:DefinedTerm
    193 Ne08783697449435eb0c9f7a528ace742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Evolution, Molecular
    195 rdf:type schema:DefinedTerm
    196 Nf0b7c85f0b584949a3a348e1226d4fb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Male
    198 rdf:type schema:DefinedTerm
    199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Biological Sciences
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Genetics
    204 rdf:type schema:DefinedTerm
    205 sg:journal.1023790 schema:issn 1471-2164
    206 schema:name BMC Genomics
    207 schema:publisher Springer Nature
    208 rdf:type schema:Periodical
    209 sg:person.01337427426.47 schema:affiliation grid-institutes:grid.267315.4
    210 schema:familyName Krzywinska
    211 schema:givenName Elzbieta
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337427426.47
    213 rdf:type schema:Person
    214 sg:person.01367635300.38 schema:affiliation grid-institutes:grid.48004.38
    215 schema:familyName Krzywinski
    216 schema:givenName Jaroslaw
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367635300.38
    218 rdf:type schema:Person
    219 sg:pub.10.1007/978-94-009-1535-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023907012
    220 https://doi.org/10.1007/978-94-009-1535-0_1
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/978-94-009-1535-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026047326
    223 https://doi.org/10.1007/978-94-009-1535-0_2
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/pl00000885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045184308
    226 https://doi.org/10.1007/pl00000885
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00018-004-4394-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031203518
    229 https://doi.org/10.1007/s00018-004-4394-y
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00427-004-0400-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035261768
    232 https://doi.org/10.1007/s00427-004-0400-x
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/341574a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016810797
    235 https://doi.org/10.1038/341574a0
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nature06341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040143850
    238 https://doi.org/10.1038/nature06341
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nbt1152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006635141
    241 https://doi.org/10.1038/nbt1152
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ng0501-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023274677
    244 https://doi.org/10.1038/ng0501-10
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nm1144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031741350
    247 https://doi.org/10.1038/nm1144
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nrg1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005461495
    250 https://doi.org/10.1038/nrg1870
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nrm1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011866739
    253 https://doi.org/10.1038/nrm1527
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nrmicro1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049172480
    256 https://doi.org/10.1038/nrmicro1101
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nsb0297-122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020229316
    259 https://doi.org/10.1038/nsb0297-122
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1475-2875-5-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005994713
    262 https://doi.org/10.1186/1475-2875-5-62
    263 rdf:type schema:CreativeWork
    264 grid-institutes:grid.267315.4 schema:alternateName Department of Biology, University of Texas at Arlington, 76019, Texas, USA
    265 schema:name Department of Biology, University of Texas at Arlington, 76019, Texas, USA
    266 rdf:type schema:Organization
    267 grid-institutes:grid.48004.38 schema:alternateName Liverpool School of Tropical Medicine, Vector Group, L3 5QA, Liverpool, UK
    268 schema:name Department of Biology, University of Texas at Arlington, 76019, Texas, USA
    269 Liverpool School of Tropical Medicine, Vector Group, L3 5QA, Liverpool, UK
    270 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...