Mapping of heterologous expressed sequence tags as an alternative to microarrays for study of defense responses in plants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Alexander M Boutanaev, Olga A Postnikova, Lev G Nemchinov

ABSTRACT

BACKGROUND: Microarray technology helped to accumulate an immense pool of data on gene expression changes in response to different environmental factors. Yet, computer- generated gene profiling using expressed sequence tags (EST) represents a valuable alternative to microarrays, which allows efficient discovery of homologous sequences in evolutionarily different species and comparison of gene sets on the whole genome scale. In this study, we used publicly available EST database derived from different plant species infected with a variety of pathogens, to generate an expression profile of homologous genes involved in defense response of a model organism, Arabidopsis thaliana. RESULTS: EST-driven prediction identified 4,935 genes (16% of the total Arabidopsis genome) which, according to the origin of EST sets, were associated with defense responses in the reference genome. Profiles of defense-related genes, obtained by mapping of heterologous EST, represent putative Arabidopsis homologs of the corresponding species. Comparison of these profiles in pairs and locating common genes allowed estimating similarity between defense-related gene sets of different plant species. To experimentally support computer data, we arbitrarily selected a number of transcription factor genes (TF) detected by EST mapping. Their expression levels were examined by real-time polymerase chain reaction during infection with yellow strain of Cucumber mosaic virus, a compatible virus systemically infecting Arabidopsis. We observed that 65% of the designated TF were upregulated in accordance with the EST-generated profile. CONCLUSION: We demonstrated that heterologous EST mapping may be efficiently used to reveal genes involved in host defense responses to pathogens. Upregulated genes identified in this study substantially overlap with those previously obtained by microarrays. More... »

PAGES

273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2164-10-273

DOI

http://dx.doi.org/10.1186/1471-2164-10-273

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041109263

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19538747


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institute Street, 142292, Pushchino, Moscow Region, Russia", 
            "Molecular Plant Pathology Laboratory, USDA/ARS, Plant Sciences Institute, 20705, Beltsville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boutanaev", 
        "givenName": "Alexander M", 
        "id": "sg:person.0646110563.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646110563.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Basic Biological Problems", 
          "id": "https://www.grid.ac/institutes/grid.418820.7", 
          "name": [
            "Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institute Street, 142292, Pushchino, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Postnikova", 
        "givenName": "Olga A", 
        "id": "sg:person.0617744643.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617744643.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Molecular Plant Pathology Laboratory, USDA/ARS, Plant Sciences Institute, 20705, Beltsville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemchinov", 
        "givenName": "Lev G", 
        "id": "sg:person.0603056014.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603056014.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.86.16.6201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007146567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.1994.06030369.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009379932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcm163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012773700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016219953", 
          "https://doi.org/10.1038/nature01216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016219953", 
          "https://doi.org/10.1038/nature01216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdg74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018229889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023852338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.111.4.975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030673022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.12.8.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036637650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pch057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037136751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039464463", 
          "https://doi.org/10.1038/nature05286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039464463", 
          "https://doi.org/10.1038/nature05286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039464463", 
          "https://doi.org/10.1038/nature05286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045919137", 
          "https://doi.org/10.1007/pl00006502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2003.01625.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047739381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052357360", 
          "https://doi.org/10.1186/1471-2164-9-325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3871140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070468951"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Microarray technology helped to accumulate an immense pool of data on gene expression changes in response to different environmental factors. Yet, computer- generated gene profiling using expressed sequence tags (EST) represents a valuable alternative to microarrays, which allows efficient discovery of homologous sequences in evolutionarily different species and comparison of gene sets on the whole genome scale. In this study, we used publicly available EST database derived from different plant species infected with a variety of pathogens, to generate an expression profile of homologous genes involved in defense response of a model organism, Arabidopsis thaliana.\nRESULTS: EST-driven prediction identified 4,935 genes (16% of the total Arabidopsis genome) which, according to the origin of EST sets, were associated with defense responses in the reference genome. Profiles of defense-related genes, obtained by mapping of heterologous EST, represent putative Arabidopsis homologs of the corresponding species. Comparison of these profiles in pairs and locating common genes allowed estimating similarity between defense-related gene sets of different plant species. To experimentally support computer data, we arbitrarily selected a number of transcription factor genes (TF) detected by EST mapping. Their expression levels were examined by real-time polymerase chain reaction during infection with yellow strain of Cucumber mosaic virus, a compatible virus systemically infecting Arabidopsis. We observed that 65% of the designated TF were upregulated in accordance with the EST-generated profile.\nCONCLUSION: We demonstrated that heterologous EST mapping may be efficiently used to reveal genes involved in host defense responses to pathogens. Upregulated genes identified in this study substantially overlap with those previously obtained by microarrays.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2164-10-273", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Mapping of heterologous expressed sequence tags as an alternative to microarrays for study of defense responses in plants", 
    "pagination": "273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3d47610a9c6aca86b95962aa6a98e4924c376c2bf1e2c8d7bdfd3366f4448ec"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19538747"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2164-10-273"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041109263"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2164-10-273", 
      "https://app.dimensions.ai/details/publication/pub.1041109263"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2164-10-273"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-273'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-273'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-273'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2164-10-273'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      55 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2164-10-273 schema:about N00e711a6a2e4496fa85ad87e843068da
2 N2f8630064a9e4b909e099f2d6cbee6c0
3 N6709a244c6034532b57602cc0705f968
4 N929f632da4a04c5c98f67e3e14e7c1c7
5 N95fc9cd3c85d4fccbc9dee4b6ebeae8c
6 N9cd4f9ff7cab4222b20d066ffd327289
7 Naaeeee42717e47329153c70b2e59885b
8 Nbf815378711c47be942ca853ef2298b1
9 Nc2ea62b285824478aa24c7726c85ba0d
10 Nc7561d09e8de4f8f841c9a858ba037d2
11 Nf4d5f4fc5ec24c91801870b19ff16cef
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N85235784d5af462f812533d9f9cbfb2f
15 schema:citation sg:pub.10.1007/pl00006502
16 sg:pub.10.1038/nature01216
17 sg:pub.10.1038/nature05286
18 sg:pub.10.1186/1471-2164-9-325
19 https://doi.org/10.1016/j.cell.2006.02.008
20 https://doi.org/10.1016/s0022-2836(05)80360-2
21 https://doi.org/10.1046/j.1365-313x.1994.06030369.x
22 https://doi.org/10.1046/j.1365-313x.2003.01625.x
23 https://doi.org/10.1073/pnas.86.16.6201
24 https://doi.org/10.1093/emboj/cdg74
25 https://doi.org/10.1093/pcp/pch057
26 https://doi.org/10.1093/pcp/pcm163
27 https://doi.org/10.1104/pp.111.4.975
28 https://doi.org/10.1105/tpc.12.8.1425
29 https://doi.org/10.2307/3871140
30 schema:datePublished 2009-12
31 schema:datePublishedReg 2009-12-01
32 schema:description BACKGROUND: Microarray technology helped to accumulate an immense pool of data on gene expression changes in response to different environmental factors. Yet, computer- generated gene profiling using expressed sequence tags (EST) represents a valuable alternative to microarrays, which allows efficient discovery of homologous sequences in evolutionarily different species and comparison of gene sets on the whole genome scale. In this study, we used publicly available EST database derived from different plant species infected with a variety of pathogens, to generate an expression profile of homologous genes involved in defense response of a model organism, Arabidopsis thaliana. RESULTS: EST-driven prediction identified 4,935 genes (16% of the total Arabidopsis genome) which, according to the origin of EST sets, were associated with defense responses in the reference genome. Profiles of defense-related genes, obtained by mapping of heterologous EST, represent putative Arabidopsis homologs of the corresponding species. Comparison of these profiles in pairs and locating common genes allowed estimating similarity between defense-related gene sets of different plant species. To experimentally support computer data, we arbitrarily selected a number of transcription factor genes (TF) detected by EST mapping. Their expression levels were examined by real-time polymerase chain reaction during infection with yellow strain of Cucumber mosaic virus, a compatible virus systemically infecting Arabidopsis. We observed that 65% of the designated TF were upregulated in accordance with the EST-generated profile. CONCLUSION: We demonstrated that heterologous EST mapping may be efficiently used to reveal genes involved in host defense responses to pathogens. Upregulated genes identified in this study substantially overlap with those previously obtained by microarrays.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N91e66594d9b148d785f1b7716963f142
37 Na88969f72eab44bda9193a74a10be7dd
38 sg:journal.1023790
39 schema:name Mapping of heterologous expressed sequence tags as an alternative to microarrays for study of defense responses in plants
40 schema:pagination 273
41 schema:productId N167995f8b76d4bbe82f7932a408e5837
42 N6c18703c0a3a4930aae934bdad3ce3e3
43 N6f0075e72cbe4485ae684b1f3aa4ae0a
44 N7fce1a9fd1894a819442a81addda33d1
45 N8b56cd5242684ac4ab274505ab50d159
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041109263
47 https://doi.org/10.1186/1471-2164-10-273
48 schema:sdDatePublished 2019-04-10T13:14
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9084e02dc9ed40278770953f7377f351
51 schema:url http://link.springer.com/10.1186%2F1471-2164-10-273
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N00e711a6a2e4496fa85ad87e843068da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Oligonucleotide Array Sequence Analysis
57 rdf:type schema:DefinedTerm
58 N167995f8b76d4bbe82f7932a408e5837 schema:name pubmed_id
59 schema:value 19538747
60 rdf:type schema:PropertyValue
61 N2f8630064a9e4b909e099f2d6cbee6c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Databases, Genetic
63 rdf:type schema:DefinedTerm
64 N6709a244c6034532b57602cc0705f968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Chromosome Mapping
66 rdf:type schema:DefinedTerm
67 N6c18703c0a3a4930aae934bdad3ce3e3 schema:name doi
68 schema:value 10.1186/1471-2164-10-273
69 rdf:type schema:PropertyValue
70 N6f0075e72cbe4485ae684b1f3aa4ae0a schema:name dimensions_id
71 schema:value pub.1041109263
72 rdf:type schema:PropertyValue
73 N7fce1a9fd1894a819442a81addda33d1 schema:name readcube_id
74 schema:value c3d47610a9c6aca86b95962aa6a98e4924c376c2bf1e2c8d7bdfd3366f4448ec
75 rdf:type schema:PropertyValue
76 N85235784d5af462f812533d9f9cbfb2f rdf:first sg:person.0646110563.43
77 rdf:rest Na1e6eae4ede5406f97336b87207008bd
78 N8a39e113860d4cf18da6e41aeb102335 rdf:first sg:person.0603056014.31
79 rdf:rest rdf:nil
80 N8b56cd5242684ac4ab274505ab50d159 schema:name nlm_unique_id
81 schema:value 100965258
82 rdf:type schema:PropertyValue
83 N9084e02dc9ed40278770953f7377f351 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N91e66594d9b148d785f1b7716963f142 schema:volumeNumber 10
86 rdf:type schema:PublicationVolume
87 N929f632da4a04c5c98f67e3e14e7c1c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Transcription Factors
89 rdf:type schema:DefinedTerm
90 N95fc9cd3c85d4fccbc9dee4b6ebeae8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Genes, Plant
92 rdf:type schema:DefinedTerm
93 N9cd4f9ff7cab4222b20d066ffd327289 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Gene Expression Profiling
95 rdf:type schema:DefinedTerm
96 Na1e6eae4ede5406f97336b87207008bd rdf:first sg:person.0617744643.03
97 rdf:rest N8a39e113860d4cf18da6e41aeb102335
98 Na88969f72eab44bda9193a74a10be7dd schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 Naaeeee42717e47329153c70b2e59885b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name RNA, Plant
102 rdf:type schema:DefinedTerm
103 Nbf815378711c47be942ca853ef2298b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Arabidopsis
105 rdf:type schema:DefinedTerm
106 Nc2ea62b285824478aa24c7726c85ba0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Gene Expression Regulation, Plant
108 rdf:type schema:DefinedTerm
109 Nc7561d09e8de4f8f841c9a858ba037d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Expressed Sequence Tags
111 rdf:type schema:DefinedTerm
112 Nf4d5f4fc5ec24c91801870b19ff16cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Plant Diseases
114 rdf:type schema:DefinedTerm
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
119 schema:name Genetics
120 rdf:type schema:DefinedTerm
121 sg:journal.1023790 schema:issn 1471-2164
122 schema:name BMC Genomics
123 rdf:type schema:Periodical
124 sg:person.0603056014.31 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
125 schema:familyName Nemchinov
126 schema:givenName Lev G
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603056014.31
128 rdf:type schema:Person
129 sg:person.0617744643.03 schema:affiliation https://www.grid.ac/institutes/grid.418820.7
130 schema:familyName Postnikova
131 schema:givenName Olga A
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617744643.03
133 rdf:type schema:Person
134 sg:person.0646110563.43 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
135 schema:familyName Boutanaev
136 schema:givenName Alexander M
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646110563.43
138 rdf:type schema:Person
139 sg:pub.10.1007/pl00006502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045919137
140 https://doi.org/10.1007/pl00006502
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature01216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016219953
143 https://doi.org/10.1038/nature01216
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature05286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039464463
146 https://doi.org/10.1038/nature05286
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1471-2164-9-325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052357360
149 https://doi.org/10.1186/1471-2164-9-325
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cell.2006.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023852338
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1046/j.1365-313x.1994.06030369.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009379932
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1046/j.1365-313x.2003.01625.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047739381
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.86.16.6201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007146567
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/emboj/cdg74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018229889
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/pcp/pch057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037136751
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/pcp/pcm163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012773700
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1104/pp.111.4.975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030673022
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1105/tpc.12.8.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036637650
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/3871140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070468951
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.418820.7 schema:alternateName Institute of Basic Biological Problems
174 schema:name Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institute Street, 142292, Pushchino, Moscow Region, Russia
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
177 schema:name Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institute Street, 142292, Pushchino, Moscow Region, Russia
178 Molecular Plant Pathology Laboratory, USDA/ARS, Plant Sciences Institute, 20705, Beltsville, MD, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...