QTL for microstructural and biophysical muscle properties and body composition in pigs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Klaus Wimmers, Ilse Fiedler, Torsten Hardge, Eduard Murani, Karl Schellander, Siriluck Ponsuksili

ABSTRACT

BACKGROUND: The proportion of muscle fibre types and their size affect muscularity as well as functional properties of the musculature and meat quality. We aimed to identify QTL for microstructural muscle properties including muscle fibre size, their numbers and fibre type proportions as well as biophysical parameters of meat quality and traits related to body composition, i.e. pH, conductivity, area of M. longissimus dorsi and lean meat content. A QTL scan was conducted in a porcine experimental population that is based on Duroc and Berlin Miniature Pig. RESULTS: Least square regression interval mapping revealed five significant and 42 suggestive QTL for traits related to muscle fibre composition under the line-cross model as well as eight significant and 40 suggestive QTL under the half-sib model. For traits related to body composition and biophysical parameters of meat quality five and twelve significant plus nine and 22 suggestive QTL were found under the line-cross and half-sib model, respectively. Regions with either significant QTL for muscle fibre traits or significant QTL for meat quality and muscularity or both were detected on SSC1, 2, 3, 4, 5, 13, 14, 15, and 16. QTL for microstructural properties explained a larger proportion of variance than did QTL for meat quality and body composition. CONCLUSION: Microstructural properties of pig muscle and meat quality are governed by genetic variation at many loci distributed throughout the genome. QTL analysis under both, the line-cross and half-sib model, allows detecting QTL in case of fixation or segregation of the QTL alleles among the founder populations and thus provide comprehensive insight into the genetic variation of the traits under investigation. Genomic regions affecting complex traits of muscularity and meat quality as well as microstructural properties might point to QTL that in first instance affect muscle fibre traits and by this in second instance meat quality. Disentangling complex traits in their constituent phenotypes might facilitate the identification of QTL and the elucidation of the pleiotropic nature of QTL effects. More... »

PAGES

15

References to SciGraph publications

  • 2004-01. Energetic depression caused by mitochondrial dysfunction in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 1997-09. A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle in NATURE GENETICS
  • 2005-10. A QTL resource and comparison tool for pigs: PigQTLDB in MAMMALIAN GENOME
  • 2001-06. Detection of quantitative trait loci for growth and fatness in pigs in GENETICS SELECTION EVOLUTION
  • 2001-08. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition in MAMMALIAN GENOME
  • 1996-07. Methods for multiple-marker mapping of quantitative trait loci in half-sib populations in THEORETICAL AND APPLIED GENETICS
  • 2003-10. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig in NATURE
  • 1983-12. A successive histochemical staining for succinate dehydrogenase and “reversed”-ATPase in a single section for the skeletal muscle fibre typing in HISTOCHEMISTRY AND CELL BIOLOGY
  • 2001-04. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross in MAMMALIAN GENOME
  • 1999-02. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus in NATURE GENETICS
  • 2002-04. Detection of quantitative trait loci for carcass traits in the pig by using AFLP in MAMMALIAN GENOME
  • 1999-02. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs in NATURE GENETICS
  • 2002-08. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2156-7-15

    DOI

    http://dx.doi.org/10.1186/1471-2156-7-15

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009361996

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16526961


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Composition", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Least-Squares Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meat", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle Fibers, Skeletal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle, Skeletal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Swine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Swine, Miniature", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bonn", 
              "id": "https://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, 18196, Dummerstorf, Germany", 
                "Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wimmers", 
            "givenName": "Klaus", 
            "id": "sg:person.01230505007.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230505007.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leibniz Institute for Farm Animal Biology", 
              "id": "https://www.grid.ac/institutes/grid.418188.c", 
              "name": [
                "Research Institute for the Biology of Farm Animals (FBN), Research Unit Growth and Muscle Biology, 18196, Dummerstorf, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiedler", 
            "givenName": "Ilse", 
            "id": "sg:person.01306561534.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306561534.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boehringer Ingelheim (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.420061.1", 
              "name": [
                "Institute of Animal Science, Humboldt University of Berlin, 10115, Berlin, Germany", 
                "Boehringer Ingelheim, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hardge", 
            "givenName": "Torsten", 
            "id": "sg:person.01334314237.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334314237.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bonn", 
              "id": "https://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, 18196, Dummerstorf, Germany", 
                "Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murani", 
            "givenName": "Eduard", 
            "id": "sg:person.01077407354.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077407354.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bonn", 
              "id": "https://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schellander", 
            "givenName": "Karl", 
            "id": "sg:person.01040067657.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040067657.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bonn", 
              "id": "https://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Research Institute for the Biology of Farm Animals (FBN), Research Group Functional Genomics, 18196, Dummerstorf, Germany", 
                "Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ponsuksili", 
            "givenName": "Siriluck", 
            "id": "sg:person.01031274154.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031274154.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00496207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001097529", 
              "https://doi.org/10.1007/bf00496207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00496207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001097529", 
              "https://doi.org/10.1007/bf00496207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003350020019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004411445", 
              "https://doi.org/10.1007/s003350020019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.00224.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004832113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpendo.00416.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005877222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s135772980000878x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006206197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0997-71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013716618", 
              "https://doi.org/10.1038/ng0997-71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0301-6226(98)00119-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013840687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-005-0060-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014421403", 
              "https://doi.org/10.1007/s00335-005-0060-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-005-0060-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014421403", 
              "https://doi.org/10.1007/s00335-005-0060-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0264.1993.tb00231.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014629942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.00103.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015941274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2052.1998.00229.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021204875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2052.1998.00229.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021204875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.00010.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022057688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.00010.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022057688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0309-1740(99)00030-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022689086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/5938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023408334", 
              "https://doi.org/10.1038/5938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/5938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023408334", 
              "https://doi.org/10.1038/5938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1081/abio-100108342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024234653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/5935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026414063", 
              "https://doi.org/10.1038/5935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/5935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026414063", 
              "https://doi.org/10.1038/5935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2004.00466.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027141886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.2.339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032793960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035506601", 
              "https://doi.org/10.1038/nature02064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035506601", 
              "https://doi.org/10.1038/nature02064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0309-1740(02)00075-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036557843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2052.2003.00992.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036792765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-001-3052-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038389709", 
              "https://doi.org/10.1007/s00335-001-3052-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:mcbi.0000009885.34498.e6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042846740", 
              "https://doi.org/10.1023/b:mcbi.0000009885.34498.e6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0020294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044057057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00225729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045009929", 
              "https://doi.org/10.1007/bf00225729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.0931-2668.2003.00408.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046717551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-1281(11)80344-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048018412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003350010278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048564332", 
              "https://doi.org/10.1007/s003350010278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-33-3-289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048821570", 
              "https://doi.org/10.1186/1297-9686-33-3-289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1550-8528.1995.tb00117.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051040779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051586568", 
              "https://doi.org/10.1038/nature00904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051586568", 
              "https://doi.org/10.1038/nature00904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0301-6226(01)00221-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052575701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672304007165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053792341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672304007098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053905185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00764a013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055187809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2052.1999.00498-17.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056732462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/rnd:2002035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057065335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.288.5469.1248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062569562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8134840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062652907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/1997.75123126x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070879789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2000.7851247x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070881227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2001.79112812x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070881437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2002.80112801x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070881812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2003.81122938x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070882261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2003.8192155x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070882523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2003.8192179x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070882526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2005.83122723x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070883056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2005.832293x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070883097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/2005.832308x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070883099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas1987.6451412x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070902042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5713/ajas.2003.320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073085439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1096/fasebj.13.14.2051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074543330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074662812", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physrev.2000.80.3.1215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074667067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074960359", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075301134", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075301135", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079185441", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080119517", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1096/fasebj.9.11.7649409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082449119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082535482", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082604913", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jappl.1997.83.1.166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083115317"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-12", 
        "datePublishedReg": "2006-12-01", 
        "description": "BACKGROUND: The proportion of muscle fibre types and their size affect muscularity as well as functional properties of the musculature and meat quality. We aimed to identify QTL for microstructural muscle properties including muscle fibre size, their numbers and fibre type proportions as well as biophysical parameters of meat quality and traits related to body composition, i.e. pH, conductivity, area of M. longissimus dorsi and lean meat content. A QTL scan was conducted in a porcine experimental population that is based on Duroc and Berlin Miniature Pig.\nRESULTS: Least square regression interval mapping revealed five significant and 42 suggestive QTL for traits related to muscle fibre composition under the line-cross model as well as eight significant and 40 suggestive QTL under the half-sib model. For traits related to body composition and biophysical parameters of meat quality five and twelve significant plus nine and 22 suggestive QTL were found under the line-cross and half-sib model, respectively. Regions with either significant QTL for muscle fibre traits or significant QTL for meat quality and muscularity or both were detected on SSC1, 2, 3, 4, 5, 13, 14, 15, and 16. QTL for microstructural properties explained a larger proportion of variance than did QTL for meat quality and body composition.\nCONCLUSION: Microstructural properties of pig muscle and meat quality are governed by genetic variation at many loci distributed throughout the genome. QTL analysis under both, the line-cross and half-sib model, allows detecting QTL in case of fixation or segregation of the QTL alleles among the founder populations and thus provide comprehensive insight into the genetic variation of the traits under investigation. Genomic regions affecting complex traits of muscularity and meat quality as well as microstructural properties might point to QTL that in first instance affect muscle fibre traits and by this in second instance meat quality. Disentangling complex traits in their constituent phenotypes might facilitate the identification of QTL and the elucidation of the pleiotropic nature of QTL effects.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2156-7-15", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3740138", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024251", 
            "issn": [
              "1471-2156"
            ], 
            "name": "BMC Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "QTL for microstructural and biophysical muscle properties and body composition in pigs", 
        "pagination": "15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2c99195497261de51f6f7190b688b57951ba025926d4e54f41d5bff76d7d4291"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16526961"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966978"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2156-7-15"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009361996"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2156-7-15", 
          "https://app.dimensions.ai/details/publication/pub.1009361996"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2156-7-15"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-7-15'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-7-15'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-7-15'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-7-15'


     

    This table displays all metadata directly associated to this object as RDF triples.

    364 TRIPLES      21 PREDICATES      106 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2156-7-15 schema:about N0697009aaa72442faec405a26f7e53fc
    2 N18927e5be81f40b883f5f48405215696
    3 N36e6025fbcec4712ac31b55a2bb555bd
    4 N5671aca1ed2640b99d34bf96b4dd0d98
    5 N655bcc0f690141fdaebd9d54c60c0d81
    6 N67f5af3ae8a34381a99761a30b418944
    7 N7695edd8e9c04aa5ab6a2c21219735b1
    8 N791960872b3c4dba996d85b1fcc93032
    9 Na31cfd21dfd640d593f16ca6e5a02715
    10 Nd17104c165bf465caae7bc7ab920c598
    11 Ne7e2f6aa0c134f68bbd89b7414fef756
    12 Ned4c6d33de86444fadfaf03bf9cc3683
    13 Nf0e8c1e4c3be486b9b049dd41fcbca2c
    14 Nf1aca1a3537f417192e2af968c135bd3
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Nf3ba6bc5c1c5416989061b1f553fb10d
    18 schema:citation sg:pub.10.1007/bf00225729
    19 sg:pub.10.1007/bf00496207
    20 sg:pub.10.1007/s00335-001-3052-4
    21 sg:pub.10.1007/s00335-005-0060-9
    22 sg:pub.10.1007/s003350010278
    23 sg:pub.10.1007/s003350020019
    24 sg:pub.10.1023/b:mcbi.0000009885.34498.e6
    25 sg:pub.10.1038/5935
    26 sg:pub.10.1038/5938
    27 sg:pub.10.1038/nature00904
    28 sg:pub.10.1038/nature02064
    29 sg:pub.10.1038/ng0997-71
    30 sg:pub.10.1186/1297-9686-33-3-289
    31 https://app.dimensions.ai/details/publication/pub.1074662812
    32 https://app.dimensions.ai/details/publication/pub.1074960359
    33 https://app.dimensions.ai/details/publication/pub.1075301134
    34 https://app.dimensions.ai/details/publication/pub.1075301135
    35 https://app.dimensions.ai/details/publication/pub.1079185441
    36 https://app.dimensions.ai/details/publication/pub.1080119517
    37 https://app.dimensions.ai/details/publication/pub.1082535482
    38 https://app.dimensions.ai/details/publication/pub.1082604913
    39 https://doi.org/10.1002/j.1550-8528.1995.tb00117.x
    40 https://doi.org/10.1016/s0065-1281(11)80344-2
    41 https://doi.org/10.1016/s0301-6226(01)00221-4
    42 https://doi.org/10.1016/s0301-6226(98)00119-5
    43 https://doi.org/10.1016/s0309-1740(02)00075-x
    44 https://doi.org/10.1016/s0309-1740(99)00030-3
    45 https://doi.org/10.1017/s0016672304007098
    46 https://doi.org/10.1017/s0016672304007165
    47 https://doi.org/10.1017/s135772980000878x
    48 https://doi.org/10.1021/bi00764a013
    49 https://doi.org/10.1046/j.0931-2668.2003.00408.x
    50 https://doi.org/10.1046/j.1365-2052.1998.00229.x
    51 https://doi.org/10.1046/j.1365-2052.1999.00498-17.x
    52 https://doi.org/10.1046/j.1365-2052.2003.00992.x
    53 https://doi.org/10.1051/rnd:2002035
    54 https://doi.org/10.1081/abio-100108342
    55 https://doi.org/10.1093/bioinformatics/18.2.339
    56 https://doi.org/10.1096/fasebj.13.14.2051
    57 https://doi.org/10.1096/fasebj.9.11.7649409
    58 https://doi.org/10.1111/j.1439-0264.1993.tb00231.x
    59 https://doi.org/10.1111/j.1439-0388.2004.00466.x
    60 https://doi.org/10.1126/science.288.5469.1248
    61 https://doi.org/10.1126/science.8134840
    62 https://doi.org/10.1152/ajpendo.00416.2001
    63 https://doi.org/10.1152/jappl.1997.83.1.166
    64 https://doi.org/10.1152/physiolgenomics.00010.2005
    65 https://doi.org/10.1152/physiolgenomics.00103.2003
    66 https://doi.org/10.1152/physiolgenomics.00224.2003
    67 https://doi.org/10.1152/physrev.2000.80.3.1215
    68 https://doi.org/10.1371/journal.pbio.0020294
    69 https://doi.org/10.2527/1997.75123126x
    70 https://doi.org/10.2527/2000.7851247x
    71 https://doi.org/10.2527/2001.79112812x
    72 https://doi.org/10.2527/2002.80112801x
    73 https://doi.org/10.2527/2003.81122938x
    74 https://doi.org/10.2527/2003.8192155x
    75 https://doi.org/10.2527/2003.8192179x
    76 https://doi.org/10.2527/2005.83122723x
    77 https://doi.org/10.2527/2005.832293x
    78 https://doi.org/10.2527/2005.832308x
    79 https://doi.org/10.2527/jas1987.6451412x
    80 https://doi.org/10.5713/ajas.2003.320
    81 schema:datePublished 2006-12
    82 schema:datePublishedReg 2006-12-01
    83 schema:description BACKGROUND: The proportion of muscle fibre types and their size affect muscularity as well as functional properties of the musculature and meat quality. We aimed to identify QTL for microstructural muscle properties including muscle fibre size, their numbers and fibre type proportions as well as biophysical parameters of meat quality and traits related to body composition, i.e. pH, conductivity, area of M. longissimus dorsi and lean meat content. A QTL scan was conducted in a porcine experimental population that is based on Duroc and Berlin Miniature Pig. RESULTS: Least square regression interval mapping revealed five significant and 42 suggestive QTL for traits related to muscle fibre composition under the line-cross model as well as eight significant and 40 suggestive QTL under the half-sib model. For traits related to body composition and biophysical parameters of meat quality five and twelve significant plus nine and 22 suggestive QTL were found under the line-cross and half-sib model, respectively. Regions with either significant QTL for muscle fibre traits or significant QTL for meat quality and muscularity or both were detected on SSC1, 2, 3, 4, 5, 13, 14, 15, and 16. QTL for microstructural properties explained a larger proportion of variance than did QTL for meat quality and body composition. CONCLUSION: Microstructural properties of pig muscle and meat quality are governed by genetic variation at many loci distributed throughout the genome. QTL analysis under both, the line-cross and half-sib model, allows detecting QTL in case of fixation or segregation of the QTL alleles among the founder populations and thus provide comprehensive insight into the genetic variation of the traits under investigation. Genomic regions affecting complex traits of muscularity and meat quality as well as microstructural properties might point to QTL that in first instance affect muscle fibre traits and by this in second instance meat quality. Disentangling complex traits in their constituent phenotypes might facilitate the identification of QTL and the elucidation of the pleiotropic nature of QTL effects.
    84 schema:genre research_article
    85 schema:inLanguage en
    86 schema:isAccessibleForFree true
    87 schema:isPartOf N76c3e92661424a8aa7fede437a384461
    88 Nf3a70e5658b24da19350e92896fb02fb
    89 sg:journal.1024251
    90 schema:name QTL for microstructural and biophysical muscle properties and body composition in pigs
    91 schema:pagination 15
    92 schema:productId N6cf908d5d702438aad42bd44fe983f36
    93 N940316b02a8c407188e1d1bacc700e1c
    94 N9cfeeaab9e724ad499228f13fbe04033
    95 Ncefabe4417494751b70f7a9870a4873b
    96 Ndc2d2db27e754d2ba5ac57dc779df706
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009361996
    98 https://doi.org/10.1186/1471-2156-7-15
    99 schema:sdDatePublished 2019-04-10T14:07
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N7ab40cf908bf4c24b8f32c00285996a9
    102 schema:url http://link.springer.com/10.1186%2F1471-2156-7-15
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N0697009aaa72442faec405a26f7e53fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Meat
    108 rdf:type schema:DefinedTerm
    109 N18927e5be81f40b883f5f48405215696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Male
    111 rdf:type schema:DefinedTerm
    112 N204592d6c16d4fc08fff4d791def1068 rdf:first sg:person.01040067657.88
    113 rdf:rest Nc2170ebb9afa4505a1c271d9572ebd2e
    114 N36e6025fbcec4712ac31b55a2bb555bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Animals
    116 rdf:type schema:DefinedTerm
    117 N5671aca1ed2640b99d34bf96b4dd0d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Muscle Fibers, Skeletal
    119 rdf:type schema:DefinedTerm
    120 N655bcc0f690141fdaebd9d54c60c0d81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Genetic Variation
    122 rdf:type schema:DefinedTerm
    123 N67f5af3ae8a34381a99761a30b418944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Muscle, Skeletal
    125 rdf:type schema:DefinedTerm
    126 N6cf908d5d702438aad42bd44fe983f36 schema:name doi
    127 schema:value 10.1186/1471-2156-7-15
    128 rdf:type schema:PropertyValue
    129 N7695edd8e9c04aa5ab6a2c21219735b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Body Composition
    131 rdf:type schema:DefinedTerm
    132 N76c3e92661424a8aa7fede437a384461 schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 N780b586557a74bbc94bf2554bb89763c rdf:first sg:person.01306561534.92
    135 rdf:rest N916cf2cab5b64390997b4ecc2e81440b
    136 N791960872b3c4dba996d85b1fcc93032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Genetic Markers
    138 rdf:type schema:DefinedTerm
    139 N7ab40cf908bf4c24b8f32c00285996a9 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 N916cf2cab5b64390997b4ecc2e81440b rdf:first sg:person.01334314237.09
    142 rdf:rest Nc69e8827899041cc83af8f26ea9a4075
    143 N940316b02a8c407188e1d1bacc700e1c schema:name dimensions_id
    144 schema:value pub.1009361996
    145 rdf:type schema:PropertyValue
    146 N9cfeeaab9e724ad499228f13fbe04033 schema:name pubmed_id
    147 schema:value 16526961
    148 rdf:type schema:PropertyValue
    149 Na31cfd21dfd640d593f16ca6e5a02715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Chromosome Mapping
    151 rdf:type schema:DefinedTerm
    152 Nc2170ebb9afa4505a1c271d9572ebd2e rdf:first sg:person.01031274154.50
    153 rdf:rest rdf:nil
    154 Nc69e8827899041cc83af8f26ea9a4075 rdf:first sg:person.01077407354.49
    155 rdf:rest N204592d6c16d4fc08fff4d791def1068
    156 Ncefabe4417494751b70f7a9870a4873b schema:name readcube_id
    157 schema:value 2c99195497261de51f6f7190b688b57951ba025926d4e54f41d5bff76d7d4291
    158 rdf:type schema:PropertyValue
    159 Nd17104c165bf465caae7bc7ab920c598 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Female
    161 rdf:type schema:DefinedTerm
    162 Ndc2d2db27e754d2ba5ac57dc779df706 schema:name nlm_unique_id
    163 schema:value 100966978
    164 rdf:type schema:PropertyValue
    165 Ne7e2f6aa0c134f68bbd89b7414fef756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Least-Squares Analysis
    167 rdf:type schema:DefinedTerm
    168 Ned4c6d33de86444fadfaf03bf9cc3683 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Swine, Miniature
    170 rdf:type schema:DefinedTerm
    171 Nf0e8c1e4c3be486b9b049dd41fcbca2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Quantitative Trait Loci
    173 rdf:type schema:DefinedTerm
    174 Nf1aca1a3537f417192e2af968c135bd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Swine
    176 rdf:type schema:DefinedTerm
    177 Nf3a70e5658b24da19350e92896fb02fb schema:volumeNumber 7
    178 rdf:type schema:PublicationVolume
    179 Nf3ba6bc5c1c5416989061b1f553fb10d rdf:first sg:person.01230505007.40
    180 rdf:rest N780b586557a74bbc94bf2554bb89763c
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Genetics
    186 rdf:type schema:DefinedTerm
    187 sg:grant.3740138 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-7-15
    188 rdf:type schema:MonetaryGrant
    189 sg:journal.1024251 schema:issn 1471-2156
    190 schema:name BMC Genetics
    191 rdf:type schema:Periodical
    192 sg:person.01031274154.50 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
    193 schema:familyName Ponsuksili
    194 schema:givenName Siriluck
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031274154.50
    196 rdf:type schema:Person
    197 sg:person.01040067657.88 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
    198 schema:familyName Schellander
    199 schema:givenName Karl
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040067657.88
    201 rdf:type schema:Person
    202 sg:person.01077407354.49 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
    203 schema:familyName Murani
    204 schema:givenName Eduard
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077407354.49
    206 rdf:type schema:Person
    207 sg:person.01230505007.40 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
    208 schema:familyName Wimmers
    209 schema:givenName Klaus
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230505007.40
    211 rdf:type schema:Person
    212 sg:person.01306561534.92 schema:affiliation https://www.grid.ac/institutes/grid.418188.c
    213 schema:familyName Fiedler
    214 schema:givenName Ilse
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306561534.92
    216 rdf:type schema:Person
    217 sg:person.01334314237.09 schema:affiliation https://www.grid.ac/institutes/grid.420061.1
    218 schema:familyName Hardge
    219 schema:givenName Torsten
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334314237.09
    221 rdf:type schema:Person
    222 sg:pub.10.1007/bf00225729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045009929
    223 https://doi.org/10.1007/bf00225729
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/bf00496207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001097529
    226 https://doi.org/10.1007/bf00496207
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00335-001-3052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038389709
    229 https://doi.org/10.1007/s00335-001-3052-4
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00335-005-0060-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014421403
    232 https://doi.org/10.1007/s00335-005-0060-9
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s003350010278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048564332
    235 https://doi.org/10.1007/s003350010278
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s003350020019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004411445
    238 https://doi.org/10.1007/s003350020019
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1023/b:mcbi.0000009885.34498.e6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042846740
    241 https://doi.org/10.1023/b:mcbi.0000009885.34498.e6
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/5935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026414063
    244 https://doi.org/10.1038/5935
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/5938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023408334
    247 https://doi.org/10.1038/5938
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature00904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051586568
    250 https://doi.org/10.1038/nature00904
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nature02064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035506601
    253 https://doi.org/10.1038/nature02064
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ng0997-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013716618
    256 https://doi.org/10.1038/ng0997-71
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1297-9686-33-3-289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048821570
    259 https://doi.org/10.1186/1297-9686-33-3-289
    260 rdf:type schema:CreativeWork
    261 https://app.dimensions.ai/details/publication/pub.1074662812 schema:CreativeWork
    262 https://app.dimensions.ai/details/publication/pub.1074960359 schema:CreativeWork
    263 https://app.dimensions.ai/details/publication/pub.1075301134 schema:CreativeWork
    264 https://app.dimensions.ai/details/publication/pub.1075301135 schema:CreativeWork
    265 https://app.dimensions.ai/details/publication/pub.1079185441 schema:CreativeWork
    266 https://app.dimensions.ai/details/publication/pub.1080119517 schema:CreativeWork
    267 https://app.dimensions.ai/details/publication/pub.1082535482 schema:CreativeWork
    268 https://app.dimensions.ai/details/publication/pub.1082604913 schema:CreativeWork
    269 https://doi.org/10.1002/j.1550-8528.1995.tb00117.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051040779
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/s0065-1281(11)80344-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048018412
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/s0301-6226(01)00221-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052575701
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/s0301-6226(98)00119-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013840687
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/s0309-1740(02)00075-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036557843
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/s0309-1740(99)00030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022689086
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1017/s0016672304007098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053905185
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1017/s0016672304007165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053792341
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1017/s135772980000878x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006206197
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1021/bi00764a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055187809
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1046/j.0931-2668.2003.00408.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046717551
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1046/j.1365-2052.1998.00229.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021204875
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1046/j.1365-2052.1999.00498-17.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056732462
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1046/j.1365-2052.2003.00992.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036792765
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1051/rnd:2002035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057065335
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1081/abio-100108342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024234653
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/bioinformatics/18.2.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032793960
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1096/fasebj.13.14.2051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074543330
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1096/fasebj.9.11.7649409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082449119
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1111/j.1439-0264.1993.tb00231.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014629942
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1111/j.1439-0388.2004.00466.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027141886
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1126/science.288.5469.1248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569562
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1126/science.8134840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652907
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1152/ajpendo.00416.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005877222
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1152/jappl.1997.83.1.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083115317
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1152/physiolgenomics.00010.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022057688
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1152/physiolgenomics.00103.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015941274
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1152/physiolgenomics.00224.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004832113
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1152/physrev.2000.80.3.1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074667067
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1371/journal.pbio.0020294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044057057
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.2527/1997.75123126x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070879789
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.2527/2000.7851247x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881227
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.2527/2001.79112812x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881437
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.2527/2002.80112801x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881812
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.2527/2003.81122938x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882261
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.2527/2003.8192155x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882523
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.2527/2003.8192179x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882526
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.2527/2005.83122723x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883056
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.2527/2005.832293x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883097
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.2527/2005.832308x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883099
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.2527/jas1987.6451412x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070902042
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.5713/ajas.2003.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073085439
    352 rdf:type schema:CreativeWork
    353 https://www.grid.ac/institutes/grid.10388.32 schema:alternateName University of Bonn
    354 schema:name Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
    355 Research Institute for the Biology of Farm Animals (FBN), Research Group Functional Genomics, 18196, Dummerstorf, Germany
    356 Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, 18196, Dummerstorf, Germany
    357 rdf:type schema:Organization
    358 https://www.grid.ac/institutes/grid.418188.c schema:alternateName Leibniz Institute for Farm Animal Biology
    359 schema:name Research Institute for the Biology of Farm Animals (FBN), Research Unit Growth and Muscle Biology, 18196, Dummerstorf, Germany
    360 rdf:type schema:Organization
    361 https://www.grid.ac/institutes/grid.420061.1 schema:alternateName Boehringer Ingelheim (Germany)
    362 schema:name Boehringer Ingelheim, Germany
    363 Institute of Animal Science, Humboldt University of Berlin, 10115, Berlin, Germany
    364 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...