Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Robert B Scharpf, Lynn Mireles, Qiong Yang, Anna Köttgen, Ingo Ruczinski, Katalin Susztak, Eitan Halper-Stromberg, Adrienne Tin, Stephen Cristiano, Aravinda Chakravarti, Eric Boerwinkle, Caroline S Fox, Josef Coresh, Wen Hong Linda Kao

ABSTRACT

BACKGROUND: Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown. RESULTS: We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (χ2df2=3545, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (χ2df2=3190,p=7.23×10-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03). CONCLUSIONS: This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial. More... »

PAGES

81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2156-15-81

DOI

http://dx.doi.org/10.1186/1471-2156-15-81

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027272855

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25007794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "European Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose Transport Proteins, Facilitative", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organic Anion Transporters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uric Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology, Johns Hopkins School of Medicine, 550 N. Broadway, Suite 1101, 21205, Baltimore, Maryland, USA", 
            "Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scharpf", 
        "givenName": "Robert B", 
        "id": "sg:person.0721767573.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721767573.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mireles", 
        "givenName": "Lynn", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qiong", 
        "id": "sg:person.016156456067.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016156456067.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA", 
            "Department of Medicine IV, University Hospital Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6ttgen", 
        "givenName": "Anna", 
        "id": "sg:person.01145454311.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145454311.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruczinski", 
        "givenName": "Ingo", 
        "id": "sg:person.0604723045.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604723045.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Susztak", 
        "givenName": "Katalin", 
        "id": "sg:person.0732415023.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732415023.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Denver", 
          "id": "https://www.grid.ac/institutes/grid.241116.1", 
          "name": [
            "Computational Biosciences Program, University of Colorado, Denver, Aurora, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halper-Stromberg", 
        "givenName": "Eitan", 
        "id": "sg:person.01012440600.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012440600.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tin", 
        "givenName": "Adrienne", 
        "id": "sg:person.01141403460.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141403460.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cristiano", 
        "givenName": "Stephen", 
        "id": "sg:person.01221254760.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221254760.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakravarti", 
        "givenName": "Aravinda", 
        "id": "sg:person.01221734637.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "IMM Center for Human Genetics, University of Texas School of Public Health, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boerwinkle", 
        "givenName": "Eric", 
        "id": "sg:person.01104262534.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104262534.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart Lung and Blood Institute", 
          "id": "https://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "Laboratory for Metabolic and Population Health, National Heart Lung and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fox", 
        "givenName": "Caroline S", 
        "id": "sg:person.0734736344.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734736344.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coresh", 
        "givenName": "Josef", 
        "id": "sg:person.012700421217.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700421217.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linda Kao", 
        "givenName": "Wen Hong", 
        "id": "sg:person.010012617237.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010012617237.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1152/ajpendo.00296.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000680534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-3-108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001946462", 
          "https://doi.org/10.1186/gb-2013-14-3-108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002416433", 
          "https://doi.org/10.1038/ng1696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002416433", 
          "https://doi.org/10.1038/ng1696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-9-r92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002600348", 
          "https://doi.org/10.1186/gb-2010-11-9-r92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002767840", 
          "https://doi.org/10.1038/ng1416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002767840", 
          "https://doi.org/10.1038/ng1416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004728789", 
          "https://doi.org/10.1038/ng.206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra0800885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005207717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-4-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006031115", 
          "https://doi.org/10.1186/1755-8794-4-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-10-r228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006246674", 
          "https://doi.org/10.1186/gb-2007-8-10-r228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007075476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-11-228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007241819", 
          "https://doi.org/10.1186/gb-2007-8-11-228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009126880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009349489", 
          "https://doi.org/10.1038/ng.107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009468905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddr307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014842502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6861907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016380326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/art.23752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018152741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5402306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018459854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019506323", 
          "https://doi.org/10.1186/1471-2105-13-330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019621201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-10-r108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020949971", 
          "https://doi.org/10.1186/gb-2013-14-10-r108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021326074", 
          "https://doi.org/10.1038/ng.2500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024265853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024937700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-4-r63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027840618", 
          "https://doi.org/10.1186/gb-2008-9-4-r63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-aoas155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027873610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028412488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065430", 
          "https://doi.org/10.1038/nature11247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029463141", 
          "https://doi.org/10.1038/ng.377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030444175", 
          "https://doi.org/10.1038/ng.237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.1320360216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031512520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.1320360216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031512520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031999480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxl042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033154232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034121059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxn014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034158541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00303013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036461744", 
          "https://doi.org/10.1007/bf00303013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2011.00698.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036507849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1047-2797(96)00052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036835677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037809833", 
          "https://doi.org/10.1038/nrg2825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037809833", 
          "https://doi.org/10.1038/nrg2825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00756.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038589394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00756.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038589394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040701456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxq043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041668272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2007.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043948917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03009742.2011.637952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046766870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046814516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(08)61343-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046956630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047420273", 
          "https://doi.org/10.1038/ng.238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-199907000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052868050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-199907000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052868050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-8-r77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053472112", 
          "https://doi.org/10.1186/gb-2012-13-8-r77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059958072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082695184", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown.\nRESULTS: We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (\u03c72df2=3545, p=3.19\u00d710-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57\u00d710-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (\u03c72df2=3190,p=7.23\u00d710-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46\u00d710-03).\nCONCLUSIONS: This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2156-15-81", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2345504", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529382", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345564", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691245", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2681199", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2500062", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2536122", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345510", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705248", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2554724", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2537302", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542137", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541398", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345491", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345497", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345526", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541272", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542200", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345516", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2441989", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2430005", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations", 
    "pagination": "81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81eb1aca93e38bbd001acaa6045b30863abda8906d43c96ec2166f24381650ef"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25007794"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2156-15-81"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027272855"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2156-15-81", 
      "https://app.dimensions.ai/details/publication/pub.1027272855"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2156-15-81"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-81'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-81'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-81'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-81'


 

This table displays all metadata directly associated to this object as RDF triples.

459 TRIPLES      21 PREDICATES      97 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2156-15-81 schema:about N0f357398b1b041739ba0f0007777923e
2 N1acb3f4b40114fae903e063e10c17249
3 N47a28d32b3744f1fbdfc82f9132ba5d1
4 N4e0b8e7b232240938d79629d36ebcc4f
5 N4e3471326645416ab771ba7a1a524d7a
6 N4f522a0b97a34f5297e067ca99f5d8a6
7 N610a51a43070444c9dc3837b760203a4
8 N6ad57c54003f48a2a195decf240f00a2
9 N731df2a749694ecd8be064c41afce1c4
10 N89b56e10b861435a810cf5e5d268c99f
11 N9f2550fbf1644d33b79cfc1e52446749
12 Na5b5e0c46b424c28b26543516a0b1c43
13 Nba9d72f491474620a85dff01e2218712
14 Nbbf760745c2940d19119cde07acf1c36
15 Nd74f380510ed4048b8ee399f29de118b
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N15312cc1cbbf4b79b70747b10877302b
19 schema:citation sg:pub.10.1007/bf00303013
20 sg:pub.10.1038/nature11247
21 sg:pub.10.1038/ng.107
22 sg:pub.10.1038/ng.206
23 sg:pub.10.1038/ng.237
24 sg:pub.10.1038/ng.238
25 sg:pub.10.1038/ng.2500
26 sg:pub.10.1038/ng.377
27 sg:pub.10.1038/ng1416
28 sg:pub.10.1038/ng1696
29 sg:pub.10.1038/nrg2825
30 sg:pub.10.1186/1471-2105-13-330
31 sg:pub.10.1186/1755-8794-4-17
32 sg:pub.10.1186/gb-2007-8-10-r228
33 sg:pub.10.1186/gb-2007-8-11-228
34 sg:pub.10.1186/gb-2008-9-4-r63
35 sg:pub.10.1186/gb-2010-11-9-r92
36 sg:pub.10.1186/gb-2012-13-8-r77
37 sg:pub.10.1186/gb-2013-14-10-r108
38 sg:pub.10.1186/gb-2013-14-3-108
39 https://app.dimensions.ai/details/publication/pub.1082695184
40 https://doi.org/10.1002/ajmg.1320360216
41 https://doi.org/10.1002/art.23752
42 https://doi.org/10.1002/gepi.20604
43 https://doi.org/10.1016/j.ajhg.2007.11.001
44 https://doi.org/10.1016/j.ajhg.2008.11.001
45 https://doi.org/10.1016/s0140-6736(08)61343-4
46 https://doi.org/10.1016/s1047-2797(96)00052-x
47 https://doi.org/10.1056/nejmra0800885
48 https://doi.org/10.1086/502802
49 https://doi.org/10.1093/bioinformatics/btq157
50 https://doi.org/10.1093/biostatistics/kxl042
51 https://doi.org/10.1093/biostatistics/kxn014
52 https://doi.org/10.1093/biostatistics/kxp045
53 https://doi.org/10.1093/biostatistics/kxq043
54 https://doi.org/10.1093/hmg/ddr307
55 https://doi.org/10.1093/nar/gkm076
56 https://doi.org/10.1093/nar/gkn556
57 https://doi.org/10.1093/nar/gkq963
58 https://doi.org/10.1093/nar/gks001
59 https://doi.org/10.1093/oxfordjournals.aje.a115184
60 https://doi.org/10.1097/00001648-199907000-00009
61 https://doi.org/10.1101/gr.5402306
62 https://doi.org/10.1101/gr.6861907
63 https://doi.org/10.1109/tpami.1984.4767596
64 https://doi.org/10.1111/j.1467-9868.2010.00756.x
65 https://doi.org/10.1111/j.1469-1809.2011.00698.x
66 https://doi.org/10.1152/ajpendo.00296.2009
67 https://doi.org/10.1214/07-aoas155
68 https://doi.org/10.1371/journal.pcbi.1003118
69 https://doi.org/10.1371/journal.pgen.0030194
70 https://doi.org/10.1371/journal.pgen.1000504
71 https://doi.org/10.3109/03009742.2011.637952
72 schema:datePublished 2014-12
73 schema:datePublishedReg 2014-12-01
74 schema:description BACKGROUND: Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown. RESULTS: We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (χ2df2=3545, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (χ2df2=3190,p=7.23×10-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03). CONCLUSIONS: This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.
75 schema:genre research_article
76 schema:inLanguage en
77 schema:isAccessibleForFree true
78 schema:isPartOf N2497d78e4a7249c7bbceb5328ce44bba
79 Nd87fac4be0544cda83eae32a187c2dad
80 sg:journal.1024251
81 schema:name Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations
82 schema:pagination 81
83 schema:productId N00756db1349b4f3f96e7677043f7d75f
84 N66da75e1c7d940299c38c23e1c070436
85 Nc5091d5125624320aa1a5d203457fd9a
86 Nf5adb4d02f364d99af44c3248637293d
87 Nfb31dfd09c9a44819f71992e45553f24
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027272855
89 https://doi.org/10.1186/1471-2156-15-81
90 schema:sdDatePublished 2019-04-10T19:55
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N75abb66794024c0ab53dc135bb8766e7
93 schema:url http://link.springer.com/10.1186%2F1471-2156-15-81
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N00756db1349b4f3f96e7677043f7d75f schema:name doi
98 schema:value 10.1186/1471-2156-15-81
99 rdf:type schema:PropertyValue
100 N01f5e5db9df342128d9dd43f0f29cf6b rdf:first sg:person.0734736344.00
101 rdf:rest Ne899945b2d0c45a3be6da03f11ac2fdc
102 N07502cabfd3d4648be4db20de6dbb42a rdf:first sg:person.01141403460.39
103 rdf:rest Nee2d15e2d81d48e486334a5cdfa16893
104 N0f357398b1b041739ba0f0007777923e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Gene Frequency
106 rdf:type schema:DefinedTerm
107 N10b76c69edc04f0a81ffcbf24f3bfc59 rdf:first sg:person.01104262534.26
108 rdf:rest N01f5e5db9df342128d9dd43f0f29cf6b
109 N15312cc1cbbf4b79b70747b10877302b rdf:first sg:person.0721767573.97
110 rdf:rest N227397ca1954452bab58cb10fe8f603a
111 N1acb3f4b40114fae903e063e10c17249 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Organic Anion Transporters
113 rdf:type schema:DefinedTerm
114 N227397ca1954452bab58cb10fe8f603a rdf:first Nb05da64d4aa04774839b7647f26a2a93
115 rdf:rest N4c73b9dc7fdf46d7bd50eed99f189c4b
116 N2497d78e4a7249c7bbceb5328ce44bba schema:volumeNumber 15
117 rdf:type schema:PublicationVolume
118 N2ed2bf98270e4271a6998ea1cc0c0b22 rdf:first sg:person.01012440600.51
119 rdf:rest N07502cabfd3d4648be4db20de6dbb42a
120 N38106e0c2e5c45dcb89f2ac8b1bbdf8b rdf:first sg:person.0732415023.51
121 rdf:rest N2ed2bf98270e4271a6998ea1cc0c0b22
122 N47a28d32b3744f1fbdfc82f9132ba5d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Humans
124 rdf:type schema:DefinedTerm
125 N4c73b9dc7fdf46d7bd50eed99f189c4b rdf:first sg:person.016156456067.33
126 rdf:rest Nc4bc5841f2b84b3ba31d71e443b66fc3
127 N4e0b8e7b232240938d79629d36ebcc4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Glucose Transport Proteins, Facilitative
129 rdf:type schema:DefinedTerm
130 N4e3471326645416ab771ba7a1a524d7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Polymorphism, Single Nucleotide
132 rdf:type schema:DefinedTerm
133 N4f522a0b97a34f5297e067ca99f5d8a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Genome-Wide Association Study
135 rdf:type schema:DefinedTerm
136 N5a2ba71a821d4b53be54fe2a483a57ea rdf:first sg:person.0604723045.12
137 rdf:rest N38106e0c2e5c45dcb89f2ac8b1bbdf8b
138 N610a51a43070444c9dc3837b760203a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Genotype
140 rdf:type schema:DefinedTerm
141 N66da75e1c7d940299c38c23e1c070436 schema:name readcube_id
142 schema:value 81eb1aca93e38bbd001acaa6045b30863abda8906d43c96ec2166f24381650ef
143 rdf:type schema:PropertyValue
144 N6ad57c54003f48a2a195decf240f00a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Female
146 rdf:type schema:DefinedTerm
147 N731df2a749694ecd8be064c41afce1c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Models, Statistical
149 rdf:type schema:DefinedTerm
150 N75abb66794024c0ab53dc135bb8766e7 schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 N7b37e3eed549464886501251985cf2c6 rdf:first sg:person.01221734637.59
153 rdf:rest N10b76c69edc04f0a81ffcbf24f3bfc59
154 N89b56e10b861435a810cf5e5d268c99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Male
156 rdf:type schema:DefinedTerm
157 N9f2550fbf1644d33b79cfc1e52446749 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name DNA Copy Number Variations
159 rdf:type schema:DefinedTerm
160 Na5b5e0c46b424c28b26543516a0b1c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Regression Analysis
162 rdf:type schema:DefinedTerm
163 Nb05da64d4aa04774839b7647f26a2a93 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
164 schema:familyName Mireles
165 schema:givenName Lynn
166 rdf:type schema:Person
167 Nba9d72f491474620a85dff01e2218712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Uric Acid
169 rdf:type schema:DefinedTerm
170 Nbbf760745c2940d19119cde07acf1c36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Middle Aged
172 rdf:type schema:DefinedTerm
173 Nc4bc5841f2b84b3ba31d71e443b66fc3 rdf:first sg:person.01145454311.94
174 rdf:rest N5a2ba71a821d4b53be54fe2a483a57ea
175 Nc5091d5125624320aa1a5d203457fd9a schema:name nlm_unique_id
176 schema:value 100966978
177 rdf:type schema:PropertyValue
178 Nd74f380510ed4048b8ee399f29de118b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name European Continental Ancestry Group
180 rdf:type schema:DefinedTerm
181 Nd87fac4be0544cda83eae32a187c2dad schema:issueNumber 1
182 rdf:type schema:PublicationIssue
183 Ne899945b2d0c45a3be6da03f11ac2fdc rdf:first sg:person.012700421217.04
184 rdf:rest Nfb5cb320247649abab6f5e6c94bad07f
185 Nee2d15e2d81d48e486334a5cdfa16893 rdf:first sg:person.01221254760.47
186 rdf:rest N7b37e3eed549464886501251985cf2c6
187 Nf5adb4d02f364d99af44c3248637293d schema:name dimensions_id
188 schema:value pub.1027272855
189 rdf:type schema:PropertyValue
190 Nfb31dfd09c9a44819f71992e45553f24 schema:name pubmed_id
191 schema:value 25007794
192 rdf:type schema:PropertyValue
193 Nfb5cb320247649abab6f5e6c94bad07f rdf:first sg:person.010012617237.52
194 rdf:rest rdf:nil
195 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
196 schema:name Biological Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
199 schema:name Genetics
200 rdf:type schema:DefinedTerm
201 sg:grant.2345491 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
202 rdf:type schema:MonetaryGrant
203 sg:grant.2345497 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
204 rdf:type schema:MonetaryGrant
205 sg:grant.2345504 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
206 rdf:type schema:MonetaryGrant
207 sg:grant.2345510 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
208 rdf:type schema:MonetaryGrant
209 sg:grant.2345516 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
210 rdf:type schema:MonetaryGrant
211 sg:grant.2345522 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
212 rdf:type schema:MonetaryGrant
213 sg:grant.2345526 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
214 rdf:type schema:MonetaryGrant
215 sg:grant.2345564 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
216 rdf:type schema:MonetaryGrant
217 sg:grant.2430005 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
218 rdf:type schema:MonetaryGrant
219 sg:grant.2441989 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
220 rdf:type schema:MonetaryGrant
221 sg:grant.2500062 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
222 rdf:type schema:MonetaryGrant
223 sg:grant.2529382 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
224 rdf:type schema:MonetaryGrant
225 sg:grant.2536122 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
226 rdf:type schema:MonetaryGrant
227 sg:grant.2537302 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
228 rdf:type schema:MonetaryGrant
229 sg:grant.2541272 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
230 rdf:type schema:MonetaryGrant
231 sg:grant.2541398 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
232 rdf:type schema:MonetaryGrant
233 sg:grant.2542137 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
234 rdf:type schema:MonetaryGrant
235 sg:grant.2542200 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
236 rdf:type schema:MonetaryGrant
237 sg:grant.2554724 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
238 rdf:type schema:MonetaryGrant
239 sg:grant.2681199 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
240 rdf:type schema:MonetaryGrant
241 sg:grant.2691245 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
242 rdf:type schema:MonetaryGrant
243 sg:grant.2705248 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2156-15-81
244 rdf:type schema:MonetaryGrant
245 sg:journal.1024251 schema:issn 1471-2156
246 schema:name BMC Genetics
247 rdf:type schema:Periodical
248 sg:person.010012617237.52 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
249 schema:familyName Linda Kao
250 schema:givenName Wen Hong
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010012617237.52
252 rdf:type schema:Person
253 sg:person.01012440600.51 schema:affiliation https://www.grid.ac/institutes/grid.241116.1
254 schema:familyName Halper-Stromberg
255 schema:givenName Eitan
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012440600.51
257 rdf:type schema:Person
258 sg:person.01104262534.26 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
259 schema:familyName Boerwinkle
260 schema:givenName Eric
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104262534.26
262 rdf:type schema:Person
263 sg:person.01141403460.39 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
264 schema:familyName Tin
265 schema:givenName Adrienne
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141403460.39
267 rdf:type schema:Person
268 sg:person.01145454311.94 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
269 schema:familyName Köttgen
270 schema:givenName Anna
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145454311.94
272 rdf:type schema:Person
273 sg:person.01221254760.47 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
274 schema:familyName Cristiano
275 schema:givenName Stephen
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221254760.47
277 rdf:type schema:Person
278 sg:person.01221734637.59 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
279 schema:familyName Chakravarti
280 schema:givenName Aravinda
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59
282 rdf:type schema:Person
283 sg:person.012700421217.04 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
284 schema:familyName Coresh
285 schema:givenName Josef
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700421217.04
287 rdf:type schema:Person
288 sg:person.016156456067.33 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
289 schema:familyName Yang
290 schema:givenName Qiong
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016156456067.33
292 rdf:type schema:Person
293 sg:person.0604723045.12 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
294 schema:familyName Ruczinski
295 schema:givenName Ingo
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604723045.12
297 rdf:type schema:Person
298 sg:person.0721767573.97 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
299 schema:familyName Scharpf
300 schema:givenName Robert B
301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721767573.97
302 rdf:type schema:Person
303 sg:person.0732415023.51 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
304 schema:familyName Susztak
305 schema:givenName Katalin
306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732415023.51
307 rdf:type schema:Person
308 sg:person.0734736344.00 schema:affiliation https://www.grid.ac/institutes/grid.279885.9
309 schema:familyName Fox
310 schema:givenName Caroline S
311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734736344.00
312 rdf:type schema:Person
313 sg:pub.10.1007/bf00303013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036461744
314 https://doi.org/10.1007/bf00303013
315 rdf:type schema:CreativeWork
316 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
317 https://doi.org/10.1038/nature11247
318 rdf:type schema:CreativeWork
319 sg:pub.10.1038/ng.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349489
320 https://doi.org/10.1038/ng.107
321 rdf:type schema:CreativeWork
322 sg:pub.10.1038/ng.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004728789
323 https://doi.org/10.1038/ng.206
324 rdf:type schema:CreativeWork
325 sg:pub.10.1038/ng.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030444175
326 https://doi.org/10.1038/ng.237
327 rdf:type schema:CreativeWork
328 sg:pub.10.1038/ng.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047420273
329 https://doi.org/10.1038/ng.238
330 rdf:type schema:CreativeWork
331 sg:pub.10.1038/ng.2500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021326074
332 https://doi.org/10.1038/ng.2500
333 rdf:type schema:CreativeWork
334 sg:pub.10.1038/ng.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029463141
335 https://doi.org/10.1038/ng.377
336 rdf:type schema:CreativeWork
337 sg:pub.10.1038/ng1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002767840
338 https://doi.org/10.1038/ng1416
339 rdf:type schema:CreativeWork
340 sg:pub.10.1038/ng1696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002416433
341 https://doi.org/10.1038/ng1696
342 rdf:type schema:CreativeWork
343 sg:pub.10.1038/nrg2825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037809833
344 https://doi.org/10.1038/nrg2825
345 rdf:type schema:CreativeWork
346 sg:pub.10.1186/1471-2105-13-330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019506323
347 https://doi.org/10.1186/1471-2105-13-330
348 rdf:type schema:CreativeWork
349 sg:pub.10.1186/1755-8794-4-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006031115
350 https://doi.org/10.1186/1755-8794-4-17
351 rdf:type schema:CreativeWork
352 sg:pub.10.1186/gb-2007-8-10-r228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006246674
353 https://doi.org/10.1186/gb-2007-8-10-r228
354 rdf:type schema:CreativeWork
355 sg:pub.10.1186/gb-2007-8-11-228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007241819
356 https://doi.org/10.1186/gb-2007-8-11-228
357 rdf:type schema:CreativeWork
358 sg:pub.10.1186/gb-2008-9-4-r63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027840618
359 https://doi.org/10.1186/gb-2008-9-4-r63
360 rdf:type schema:CreativeWork
361 sg:pub.10.1186/gb-2010-11-9-r92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002600348
362 https://doi.org/10.1186/gb-2010-11-9-r92
363 rdf:type schema:CreativeWork
364 sg:pub.10.1186/gb-2012-13-8-r77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053472112
365 https://doi.org/10.1186/gb-2012-13-8-r77
366 rdf:type schema:CreativeWork
367 sg:pub.10.1186/gb-2013-14-10-r108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020949971
368 https://doi.org/10.1186/gb-2013-14-10-r108
369 rdf:type schema:CreativeWork
370 sg:pub.10.1186/gb-2013-14-3-108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001946462
371 https://doi.org/10.1186/gb-2013-14-3-108
372 rdf:type schema:CreativeWork
373 https://app.dimensions.ai/details/publication/pub.1082695184 schema:CreativeWork
374 https://doi.org/10.1002/ajmg.1320360216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031512520
375 rdf:type schema:CreativeWork
376 https://doi.org/10.1002/art.23752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018152741
377 rdf:type schema:CreativeWork
378 https://doi.org/10.1002/gepi.20604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031999480
379 rdf:type schema:CreativeWork
380 https://doi.org/10.1016/j.ajhg.2007.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043948917
381 rdf:type schema:CreativeWork
382 https://doi.org/10.1016/j.ajhg.2008.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019621201
383 rdf:type schema:CreativeWork
384 https://doi.org/10.1016/s0140-6736(08)61343-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046956630
385 rdf:type schema:CreativeWork
386 https://doi.org/10.1016/s1047-2797(96)00052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036835677
387 rdf:type schema:CreativeWork
388 https://doi.org/10.1056/nejmra0800885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005207717
389 rdf:type schema:CreativeWork
390 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
391 rdf:type schema:CreativeWork
392 https://doi.org/10.1093/bioinformatics/btq157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009126880
393 rdf:type schema:CreativeWork
394 https://doi.org/10.1093/biostatistics/kxl042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033154232
395 rdf:type schema:CreativeWork
396 https://doi.org/10.1093/biostatistics/kxn014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034158541
397 rdf:type schema:CreativeWork
398 https://doi.org/10.1093/biostatistics/kxp045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046814516
399 rdf:type schema:CreativeWork
400 https://doi.org/10.1093/biostatistics/kxq043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041668272
401 rdf:type schema:CreativeWork
402 https://doi.org/10.1093/hmg/ddr307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014842502
403 rdf:type schema:CreativeWork
404 https://doi.org/10.1093/nar/gkm076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009468905
405 rdf:type schema:CreativeWork
406 https://doi.org/10.1093/nar/gkn556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024937700
407 rdf:type schema:CreativeWork
408 https://doi.org/10.1093/nar/gkq963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007075476
409 rdf:type schema:CreativeWork
410 https://doi.org/10.1093/nar/gks001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040701456
411 rdf:type schema:CreativeWork
412 https://doi.org/10.1093/oxfordjournals.aje.a115184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059958072
413 rdf:type schema:CreativeWork
414 https://doi.org/10.1097/00001648-199907000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052868050
415 rdf:type schema:CreativeWork
416 https://doi.org/10.1101/gr.5402306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018459854
417 rdf:type schema:CreativeWork
418 https://doi.org/10.1101/gr.6861907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016380326
419 rdf:type schema:CreativeWork
420 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
421 rdf:type schema:CreativeWork
422 https://doi.org/10.1111/j.1467-9868.2010.00756.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038589394
423 rdf:type schema:CreativeWork
424 https://doi.org/10.1111/j.1469-1809.2011.00698.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036507849
425 rdf:type schema:CreativeWork
426 https://doi.org/10.1152/ajpendo.00296.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000680534
427 rdf:type schema:CreativeWork
428 https://doi.org/10.1214/07-aoas155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027873610
429 rdf:type schema:CreativeWork
430 https://doi.org/10.1371/journal.pcbi.1003118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028412488
431 rdf:type schema:CreativeWork
432 https://doi.org/10.1371/journal.pgen.0030194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024265853
433 rdf:type schema:CreativeWork
434 https://doi.org/10.1371/journal.pgen.1000504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034121059
435 rdf:type schema:CreativeWork
436 https://doi.org/10.3109/03009742.2011.637952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046766870
437 rdf:type schema:CreativeWork
438 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
439 schema:name Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
440 rdf:type schema:Organization
441 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
442 schema:name Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
443 Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
444 Department of Medicine IV, University Hospital Freiburg, Freiburg im Breisgau, Germany
445 Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
446 Department of Oncology, Johns Hopkins School of Medicine, 550 N. Broadway, Suite 1101, 21205, Baltimore, Maryland, USA
447 rdf:type schema:Organization
448 https://www.grid.ac/institutes/grid.241116.1 schema:alternateName University of Colorado Denver
449 schema:name Computational Biosciences Program, University of Colorado, Denver, Aurora, Colorado, USA
450 rdf:type schema:Organization
451 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
452 schema:name Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
453 rdf:type schema:Organization
454 https://www.grid.ac/institutes/grid.267308.8 schema:alternateName The University of Texas Health Science Center at Houston
455 schema:name IMM Center for Human Genetics, University of Texas School of Public Health, Houston, Texas, USA
456 rdf:type schema:Organization
457 https://www.grid.ac/institutes/grid.279885.9 schema:alternateName National Heart Lung and Blood Institute
458 schema:name Laboratory for Metabolic and Population Health, National Heart Lung and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA
459 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...